检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:马晓录[1] 李如意 吴立辉[1] MA Xiaolu;LI Ruyi;WU Lihui(School of Mechanical and Electrical Engineering,Henan University of Technology,Zhengzhou 450001,China)
机构地区:[1]河南工业大学机电工程学院,河南郑州450001
出 处:《汽车实用技术》2022年第23期232-237,共6页Automobile Applied Technology
基 金:国家自然科学基金(U1704156)。
摘 要:为提高智能车辆行驶的平稳性和合理性,文章对近年来智能车辆常用的局部路径规划算法进行了分类和总结。首先对各类传统算法的原理进行了阐述,分析其优缺点,并指出传统算法在智能车辆上应用时的不足;其次整理分析了各类传统算法应用至智能车辆上时各学者所提出的改进算法;最后提出基于离散优化的算法是未来智能车辆局部路径规划的应用趋势,多算法融合是复杂场景下智能车辆局部路径规划的研究方向。文章的研究结果为智能车领域的研究人员在选择局部路径规划算法时提供参考。In order to improve the driving stability and rationality of intelligent vehicles, this paper classifies and summarizes the local path planning algorithms commonly used by intelligent vehicles in recent years. Firstly, this paper expounds the principles of various traditional algorithms, analyzes their advantages and disadvantages, and points out the shortcomings of traditional algorithms in the application of intelligent vehicles. Secondly, this paper sorts out and analyzes the improved algorithms proposed by scholars when various traditional algorithms are applied to intelligent vehicles. Finally, it is proposed that the algorithm based on discrete optimization is the application trend of intelligent vehicle local path planning in the future, and the fusion of multiple algorithms is the research direction of intelligent vehicle local path planning in complex scenarios. The research results of this paper can provide reference for researchers in the field of intelligent vehicles when choosing local path planning algorithms.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.19.28.64