Super-resolution DOA estimation for correlated off-grid signals via deep estimator  被引量:1

在线阅读下载全文

作  者:WU Shuang YUAN Ye ZHANG Weike YUAN Naichang 

机构地区:[1]Facility Design and Instrumentation Institute,China Aerodynamics Research and Development Center,Mianyang 621000,China [2]State Key Laboratory of Complex Electromagnetic Environment Effects on Electronics and Information System,National University of Defense Technology,Changsha 410073,China

出  处:《Journal of Systems Engineering and Electronics》2022年第6期1096-1107,共12页系统工程与电子技术(英文版)

摘  要:This paper develops a deep estimator framework of deep convolution networks(DCNs)for super-resolution direction of arrival(DOA)estimation.In addition to the scenario of correlated signals,the quantization errors of the DCN are the major challenge.In our deep estimator framework,one DCN is used for spectrum estimation with quantization errors,and the remaining two DCNs are used to estimate quantization errors.We propose training our estimator using the spatial sampled covariance matrix directly as our deep estimator’s input without any feature extraction operation.Then,we reconstruct the original spatial spectrum from the spectrum estimate and quantization errors estimate.Also,the feasibility of the proposed deep estimator is analyzed in detail in this paper.Once the deep estimator is appropriately trained,it can recover the correlated signals’spatial spectrum fast and accurately.Simulation results show that our estimator performs well in both resolution and estimation error compared with the state-of-the-art algorithms.

关 键 词:off-grid direction of arrival(DOA)estimation deep convolution network(DCN) correlated signal quantization error SUPER-RESOLUTION 

分 类 号:TN911.7[电子电信—通信与信息系统]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象