检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:孙一 刘博 孙秀彬 李桂杰 崔丁也 马振申 SUN Yi;LIU Bo;SUN Xiubin;LI Guijie;CUI Dingye;MA Zhenshen(Department of Radiology,The First Affiliated Hospital of Shandong First Medical University,Jinan 250014,China;Department of Biostatistics,School of Public Health,Cheeloo College of Medicine,ShandongUniversity,Jinan 250012,China)
机构地区:[1]山东第一医科大学第一附属医院放射科,山东济南250014 [2]山东大学齐鲁医学院公共卫生学院生物统计学系,山东济南250012
出 处:《医学影像学杂志》2022年第12期2081-2085,共5页Journal of Medical Imaging
摘 要:目的以冠状动脉造影(CAG)为金标准,探讨人工智能(AI)冠状动脉CT血管成像(CCTA-AI)联合基于冠状动脉CT的血流储备分数(FFR-CT)诊断冠状动脉狭窄病变的价值。方法选取先后行冠状动脉CT血管成像(CCTA)及冠状动脉造影(CAG)检查的90例患者的资料,两项检查时间间隔≤2周。利用AI算法获得CCTA病变直径的狭窄程度,并采用科亚医疗深脉软件计算FFR-CT数值。以CAG为金标准,血管狭窄≥70%为重度狭窄,绘制CCTA-AI、FFR-CT以及联合两种AI软件的受试者操作特征曲线,获得曲线下面积(AUC),并计算CCTA-AI联合FFR-CT的敏感度、特异度。结果将同时获得CCTA-AI及FFR-CT结果的90例患者的266支血管纳入分析。CCTA-AI、FFR-CT及两者联合诊断血管狭窄的AUC分别为0.817、0.850、0.883。CCTA-AI联合FFR-CT的诊断敏感度、特异度分别为82.09%和81.08%。结论CCTA-AI联合FFR-CT对冠状动脉狭窄的诊断效能得到提高。Objective To investigate the effect of artificial intelligence based coronary computed tomography angiography(CCTA-AI)combined with the fractional flow reserve based on coronary CT(FFR-CT)on the diagnosis of coronary stenosis,with reference to the coronary angiography(CAG)results.Methods Ninety patients were retrospectively enrolled in this study,who underwent both coronary computed tomography angiography(CCTA)and the CAG within 2 weeks.The stenosis degree of pathological vessels was obtained by CCTA-AI algorithm,and the FFR-CT value was calculated by Keya Medical software based on CCTA images.Stenosis degree of vascular≥70%was considered to be obvious vascular stenosis.Receiver operating characteristic(ROC)curve analysis was performed to evaluate the diagnosis performance with area under the receiver operating characteristic curve(AUC).Sensitivity and specificity were recorded.Results Finally,a total of 266 vessels from 90 patients with CCTA-AI and FFR-CT value were included.The AUC values were 0.85,0.817 and 0.883 for CCTA-AI,FFR-CT and the combination of CCTA-AI and FFR-CT.The sensitivity,specificity to identify coronary stenosis were 82.09%,81.08%,for CCTA-AI combined with FFR-CT.Conclusion The diagnostic efficiency of CCTA-AI combined with FFR-CT for coronary artery stenosis has been improved.
关 键 词:冠状动脉粥样硬化性心脏病 人工智能 冠状动脉血管成像 冠状动脉造影 血流储备分数 体层摄影术 X线计算机
分 类 号:R541.4[医药卫生—心血管疾病] R814.42[医药卫生—内科学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.225.95.155