检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:马凯 张宗宇 董晓娅[1] 邱白晶[1] Ma Kai;Zhang Zongyu;Dong Xiaoya;Qiu Baijing(Key Laboratory of Crop Protection Engineering,Ministry of Agriculture and Rural Affairs,Jiangsu University,Zhenjiang 212013,China)
机构地区:[1]江苏大学农业农村部植保工程重点实验室,江苏镇江212013
出 处:《农机化研究》2023年第5期49-54,共6页Journal of Agricultural Mechanization Research
基 金:国家重点研发计划项目(2017YFD020030302);国家自然科学基金项目(31971790);江苏省科技计划项目(BE2020328)。
摘 要:目前,农药喷雾沉积的检测方法,大都无法直接、快速检测雾滴在叶片上的沉积分布参数,对于实时评价植保喷雾机械的作业效果及反馈调整作业参数效率产生了影响。针对此问题,本文基于荧光反应和图像处理,设计了一种叶面雾滴沉积检测系统。试验结果表明:相比于ImageJ对叶面雾滴覆盖率的处理结果,本监测系统的平均误差为4.08%;相比于人工计数,本系统的雾滴沉积粒数计数结果误差为2.46%~4.69%,平均误差为4.01%;使用的荧光试剂可以满足大田工作需求。所设计的检测系统可以实现对叶片雾滴沉积参数的快速无损检测。At present,most of the detection methods for pesticide spray deposition cannot directly and quickly detect the deposition distribution parameters of the droplets on the leaves.This has an impact on the real-time evaluation of the operation effect of the plant protection spray machinery and the efficiency of feedback and adjustment of the operation parameters.In response to this problem,this paper designs a foliar droplet deposition detection system based on fluorescence response and image processing.The test results show that the average error of the monitoring system in this paper is 4.08%compared to the processing results of ImageJ on the coverage rate of fog droplets on the leaves;Between 2.46%and 4.69%,the average error is 4.01%;the fluorescent reagents used can meet the needs of field work.Using the detection system designed in this paper,the rapid and non-destructive detection of leaf droplet deposition parameters can be achieved.
分 类 号:S237[农业科学—农业机械化工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.144.226.170