An attention-based cascade R-CNN model for sternum fracture detection in X-ray images  被引量:4

在线阅读下载全文

作  者:Yang Jia Haijuan Wang Weiguang Chen Yagang Wang Bin Yang 

机构地区:[1]School of Computer,Xi'an University of Posts and Telecommunications,Xi'an,Shaanxi,China [2]Shaanxi Key Laboratory of Network Data Intelligent Processing,Xi'an University of Posts and Telecommunications,Xi'an,Shaanxi,China [3]Xi'an Key Laboratory of Big Data and Intelligent Computing,Xi'an,Shaanxi,China [4]Department of Radiology,Xi'an Honghui Hospital,Xi'an,China

出  处:《CAAI Transactions on Intelligence Technology》2022年第4期658-670,共13页智能技术学报(英文)

基  金:Science and technology plan project of Xi'an,Grant/Award Number:GXYD17.12;Open Fund of Shaanxi Key Laboratory of Network Data Intelligent Processing,Grant/Award Number:XUPT-KLND(201802,201803);Key Research and Development Program of Shaanxi,Grant/Award Number:2019GY-021。

摘  要:Fracture is one of the most common and unexpected traumas.If not treated in time,it may cause serious consequences such as joint stiffness,traumatic arthritis,and nerve injury.Using computer vision technology to detect fractures can reduce the workload and misdiagnosis of fractures and also improve the fracture detection speed.However,there are still some problems in sternum fracture detection,such as the low detection rate of small and occult fractures.In this work,the authors have constructed a dataset with 1227 labelled X-ray images for sternum fracture detection.The authors designed a fully automatic fracture detection model based on a deep convolution neural network(CNN).The authors used cascade R-CNN,attention mechanism,and atrous convolution to optimise the detection of small fractures in a large X-ray image with big local variations.The authors compared the detection results of YOLOv5 model,cascade R-CNN and other state-of-the-art models.The authors found that the convolution neural network based on cascade and attention mechanism models has a better detection effect and arrives at an mAP of 0.71,which is much better than using the YOLOv5 model(mAP=0.44)and cascade R-CNN(mAP=0.55).

关 键 词:attention mechanism cascade R-CNN fracture detection X-ray image 

分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象