检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:宰州鹏 赵升[1,2] 朱翔鸥 张正江[1] 董凡琦[1] ZAI Zhoupeng;ZHAO Sheng;ZHU Xiang’ou;ZHANG Zhengjiang;DONG Fanqi(School of Electrical and Electronic Engineering,Wenzhou University,Wenzhou,Zhejiang 325035;Technology Institute of Wenzhou University in Yueqing,Yueqing,Zhejiang 325600)
机构地区:[1]温州大学电气与电子工程学院,浙江温州325035 [2]温州大学乐清工业研究院,浙江乐清325600
出 处:《电气技术》2022年第12期9-16,共8页Electrical Engineering
基 金:国家自然科学基金(52077158);浙江省重点研发计划(2014NM005)。
摘 要:非侵入式负荷识别(NILM)作为分析用户用电行为的主要途径,对开展能耗监测、实现用电安全评估具有重要意义。针对原始电压-电流(V-I)轨迹特征辨识准确度不高的问题,本文提出一种基于V-I轨迹特征的颜色编码和负荷高次谐波特征相融合的识别方法。首先,将高频采样数据经过数据预处理,提取出负荷的V-I轨迹和高次谐波特征,并利用颜色编码技术将瞬时无功功率、功率因数与电流序列分布的数值特征分别映射到彩色图像RGB的三个通道像素矩阵中。然后,引入高次谐波特征与RGB三通道像素矩阵相融合,形成混合彩色图像。最后,运用AlexNet网络的迁移学习对负荷进行训练和分类,通过PLAID数据集与实测数据进行验证,所述负荷识别方法辨识准确率达到95%以上,模型具有良好的泛化能力,可用于家庭及类似场合的用电安全管理。Non-intrusive load monitoring(NILM),as the main way to analyze user’s electricity consumption behavior,is of great significance to carry out energy consumption monitoring and realize electricity safety assessment.Aiming at the problem that the identification accuracy of the original voltage-current(V-I)trajectory features is not high,a recognition method based on the color coding of V-I trajectory features and the fusion of load high-order harmonic features is proposed in this paper.First,the high-frequency sampling data is preprocessed to extract the V-I trajectory and high-order harmonic characteristics of the load,and the numerical characteristics of instantaneous reactive power,power factor and current sequence distribution are mapped to the three channel pixel matrix of RGB color image by using color coding technology.Then,the high-order harmonic features are introduced and fused with three channel pixel matrix to form a mixed color image.Finally,the transfer learning of AlexNet network is used to train and classify the loads,which is verified by the PLAID data set and the measured data.The identification accuracy of the proposed load identification method is more than 95%,and the model has good generalization ability,which can be used for electricity safety management in home and similar occasions.
关 键 词:非侵入式负荷识别(NILM) AlexNet网络 V-I轨迹 彩色编码 融合特征
分 类 号:TM714[电气工程—电力系统及自动化]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.147.140.129