遗传算法在优化输电网络扩建规划中的应用  

Application of genetic algorithm in optimizing transmission network expansion planning

在线阅读下载全文

作  者:许威 林月娥 张霞 XU Wei;LIN Yue’e;ZHANG Xia(Beijing Urban Construction Design and Development Group Co.,Ltd.,Beijing 100037,China;School of Information and Electronics,Beijing Institute of Technology,Beijing 100081,China)

机构地区:[1]北京城建设计发展集团股份有限公司,北京100037 [2]北京理工大学信息与电子学院,北京100081

出  处:《电子设计工程》2023年第1期39-44,49,共7页Electronic Design Engineering

基  金:北京理工大学横向科研项目(2020I031)。

摘  要:为了满足输电网络长期情境中的需求增长,最大限度地降低投资成本并为所有系统消费者提供电能,需对输电网络进行扩建规划。提出了一种新的输电网络扩建规划数学模型,将移相器与输电线路和传统变压器等元件一起作为输电系统扩展的新元件。在该方法中,添加移相器是为了重新分配系统中的有功功率流,从而减少由于新输电线路带来的总投资成本。该数学模型基于标准直流模型,给出了混合整数非线性规划问题的结构。文中应用了遗传算法来优化网络中候选元件的分配。在IEEE-24总线系统中进行的计算仿真结果表明,所提出的方法和模型具有良好的性能,表明在规划过程中使用这些非常规设备在技术上可行。In order to meet the demand growth of the transmission network in the long term scenario,minimize the investment cost and provide electricity to all system consumers,transmission network expansion planning is required.A new mathematical model of transmission network expansion planning is proposed.The main idea is to use phase⁃shifting transformers,transmission lines and traditional transformers as a new element of transmission system expansion.In this way,phase shifters are added to redistribute the active power flow in the system,thereby reducing the total investment cost due to the new transmission line.The mathematical model is based on the standard DC model,and the structure of mixed integer nonlinear programming problem is presented.In this paper,genetic algorithm is applied to optimize the allocation of candidate components in the network.The simulation results on the IEEE-24 bus system show that the proposed method and model have good performance,which indicates that it is technically feasible to use these unconventional devices in the planning process.

关 键 词:输电网络 移相器 遗传算法 直流模型 

分 类 号:TP273[自动化与计算机技术—检测技术与自动化装置] TM715[自动化与计算机技术—控制科学与工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象