Adaptive multiscale convolutional neural network model for chemical process fault diagnosis  被引量:3

在线阅读下载全文

作  者:Ruoshi Qin Jinsong Zhao 

机构地区:[1]State Key Laboratory of Chemical Engineering,Department of Chemical Engineering,Tsinghua University,Beijing 100084,China [2]Beijing Key Laboratory of Industrial Big Data System and Application,Tsinghua University,Beijing 100084,China

出  处:《Chinese Journal of Chemical Engineering》2022年第10期398-411,共14页中国化学工程学报(英文版)

基  金:support from the National Science and Technology Innovation 2030 Major Project of the Ministry of Science and Technology of China(2018AAA0101605);the National Natural Science Foundation of China(21878171)。

摘  要:Intelligent fault recognition techniques are essential to ensure the long-term reliability of manufacturing.Due to the variations in material,equipment and environment,the process variables monitored by sensors contain diverse data characteristics at different time scales or in multiple operating modes.Despite much progress in statistical learning and deep learning for fault recognition,most models are constrained by abundant diagnostic expertise,inefficient multiscale feature extraction and unruly multimode condition.To overcome the above issues,a novel fault diagnosis model called adaptive multiscale convolutional neural network(AMCNN)is developed in this paper.A new multiscale convolutional learning structure is designed to automatically mine multiple-scale features from time-series data,embedding the adaptive attention module to adjust the selection of relevant fault pattern information.The triplet loss optimization is adopted to increase the discrimination capability of the model under the multimode condition.The benchmarks CSTR simulation and Tennessee Eastman process are utilized to verify and illustrate the feasibility and efficiency of the proposed method.Compared with other common models,AMCNN shows its outstanding fault diagnosis performance and great generalization ability.

关 键 词:Neural networks Multiscale Adaptive attentionmodule Triplet lossoptimization Fault diagnosis Chemical processes 

分 类 号:TP183[自动化与计算机技术—控制理论与控制工程] TQ050.7[自动化与计算机技术—控制科学与工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象