检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:张维 汪宗御 郭玉 杨孟飞 李政楷 常超[1] 张继锋[1,2] 纪玉龙 ZHANG Wei;WANG Zongyu;GUO Yu;YANG Mengfei;LI Zhengkai;CHANG Chao;ZHANG Jifeng;JI Yulong(Marine Engineering,Dalian Maritime University,Dalian 116026,Liaoning,China;Yangtze Delta Region Institute of Tsinghua University,Jiaxing 314006,Zhejiang,China)
机构地区:[1]大连海事大学轮机工程学院,辽宁大连116026 [2]浙江清华长三角研究院,浙江嘉兴314006
出 处:《化工进展》2022年第12期6644-6655,共12页Chemical Industry and Engineering Progress
基 金:中国博士后科学基金(2021M690496,2020M670724);国家重点研发计划(SQ2019YFE011597);国家自然科学基金(51876019,52106225);大连市杰出青年科技人才支持计划(2020RJ03);中央高校基本科研业务费(3132019331)。
摘 要:受绿色生态和可持续发展战略理念的驱动,废气排放对环境造成的危害备受关注。NO_(x)作为废气的主要污染物之一,是废气污染物控制的重点与难点。基于此,本文介绍了传统后处理脱硝技术的优缺点及应用现状,回顾了介质阻挡放电(DBD)基础研究,分析了DBD脱硝性能,重点阐述了DBD协同催化剂脱硝及脱硝机理。分析指出:①DBD驱动电源与反应器结构是制约脱硝性能的关键因素;②单独DBD技术脱硝性能较差,而DBD协同催化填充床技术展现出优异的脱硝性能和较高的N_(2)选择性;③等离子体协同催化脱硝机理研究主要包括等离子体特征参数诊断、流体模型验证、等离子体传播机制分析以及原位表征,而在等离子体催化理论计算方面的研究较为缺乏。因此,未来DBD协同催化脱硝技术应立足如下几个方面发展:研发高功率、低能耗电源,提升废气NO_(x)处理量;优化反应器结构,提升脱硝的效率与选择性;设计与构筑适宜于DBD环境的脱硝催化剂;深入全面分析DBD协同催化剂脱硝机理。Driven by the concept of green ecology and sustainable development strategy,exhaust emissions to the environment has attracted much attention.As one of the main pollutants of exhaust gas,NO_(x) is the focus and difficulty of exhaust gas pollutant control.The advantages,disadvantages and application status of traditional post-treatment de-NO_(x) technologies are introduced.The basic researches of dielectric barrier discharge are reviewed.The synergistic de-NO_(x) performance and mechanism by DBD and catalyst are analyzed.It is pointed out that:①the DBD power supply and the reactor structure are the key factors restricting the de-NO_(x) performance;②the de-NO_(x) performance of DBD only is not satisfactory,but the combination of DBD with catalytic packed bed exhibits excellent de-NO_(x) efficiency and high N_(2) selectivity;③the researches on de-NO_(x) mechanism of plasma-assisted catalyst mainly include plasma characteristic parameter diagnosis, fluid model verification, plasma propagation mechanism analysis and in-situ characterization. However, the research on the theoretical calculation of plasma catalysis is limited. Therefore, we propose that the future development of DBD de-NO_(x) technology should be based on ①the high-power and high-efficiency power supply to improve the NO_(x) treatment capacity;② the reactor structure optimization to improve the de-NO_(x) efficiency and N_(2) selectivity;③ suitable design and construct of the de-NO_(x) catalyst for DBD environment;④ the comprehensive analysis of the de-NO_(x) mechanism of DBD synergistic catalyst.
分 类 号:X511[环境科学与工程—环境工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.216.82.12