洋山港VTS报告船舶流的统计特性  

Statistical characteristics of vessel flow in VTS reports in Yangshan Port

在线阅读下载全文

作  者:刘超[1] LIU Chao(Department of Navgation,Anhui Communications Vocational&Technical College,Hefei 230051,China)

机构地区:[1]安徽交通职业技术学院航海系,安徽合肥230051

出  处:《山东交通学院学报》2023年第1期102-109,共8页Journal of Shandong Jiaotong University

基  金:安徽省高校优秀拔尖人才培育项目(gxgnfx2020170);安徽省高校自然科学研究重大项目(KJ2021ZD0171)。

摘  要:为分析某水域船舶流特征和运行规律,量化研究船舶流到港规律,为港口营运和船舶交通管理(vessel traffic services, VTS)提供数据支持,以洋山港水域2020年66 d内连续的1387条VTS实测船舶流记录数据为统计样本,基于矩估计理论的K-S检验和χ^(2)检验,从拟合最优的角度对船舶到港情况进行参数估计。结果表明,洋山港水域VTS报告的船舶在8、9月的船舶流样本服从正态分布,7月船舶流样本不服从泊松分布和正态分布,证明船舶流的分布特征随环境和时间因素变化显著,仅采用泊松分布或正态分布并不能全面描述水域交通流特征。相关研究结论可为船舶流特征分析、通航调度等相关研究提供借鉴和参考。In order to analyze the characteristics and operation rules of ship flow in a certain water area, and research quantitatively the rules of ship flow to the port, and provide data support for port operation and vessel traffic services(VTS), parameter estimation of ship arrival from the perspective of optimal fitting based on the K-S test and χ^(2) test of moment estimation theory is carried out, taking 1387 consecutive VTS measured ship flow records in Yangshan Port water area in 66 days in 2020 as the statistical samples. The results show that the ship flow samples reported by VTS in Yangshan Port waters in August and September obey Normal distribution, while the samples in July do not obey Poisson distribution and Normal distribution, which proves that the distribution characteristics of ship flow change significantly with environmental and time factors, and only Poisson distribution or Normal distribution can′t fully describe the characteristics of traffic flow in waters. The relevant research conclusions can provide reference for the analysis of ship flow characteristics, navigation scheduling and other related research.

关 键 词:正态分布 泊松分布 K-S检验 χ^(2)检验 船舶流 

分 类 号:U652.14[交通运输工程—港口、海岸及近海工程] U691[交通运输工程—船舶与海洋工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象