基于强化学习的实时视频流控与移动终端训练方法研究  

Reinforcement learning-based real-time video streaming control and on-device training research

在线阅读下载全文

作  者:张欢欢 周安福 马华东[1] ZHANG Huanhuan;ZHOU Anfu;MA Huadong(Beijing University of Posts and Telecommunications,Beijing Key Lab of Intelligent Telecommunication Software and Multimedia,Beijing 100876,China)

机构地区:[1]北京邮电大学智能通信软件与多媒体北京市重点实验室,北京100876

出  处:《物联网学报》2022年第4期1-13,共13页Chinese Journal on Internet of Things

基  金:国家自然科学基金资助项目(No.61921003);博士后创新人才支持计划(No.BX20220046)。

摘  要:以物联网、移动互联网为核心的服务平台加速发展,数以亿计的终端用户通过实时视频进行通信,实时视频已成为人们数字化生活中不可替代的核心工具。然而,互联网络呈现高动态、强异构的特性,对实时视频的流控技术提出了严格要求,用户体验质量仍然不佳。设计了适用于异构网络环境的强化学习驱动的自适应流控算法、研发了移动终端训练技术以降低服务端开销,并对算法的设计及结构进行了深入的评测研究。实验表明,所设计的自适应流控算法可以有效地预测网络带宽,相较于国际代表性的流控算法,将预测带宽误差降低了48.48%。有效的带宽预测进一步提升了视频用户体验质量,如视频流畅度提升了60.65%、视频清晰度提升了16.52%。此外,测评分析可为实时视频流优化方案提供经验性指导,有力推动智能视频应用的发展。Service platforms centered on the Internet of things and mobile Internet are in accelerating process.Hundreds of millions of end-users communicate through network real-time video services,which have become an irreplaceable core tool in human’s digital life.However,the Internet is becoming dynamic,and heterogeneous,which imposes stringent requirements on real-time video streaming control technology.Moreover,the QoE of real-time video is not satisfactory.An adaptive reinforcement learning-based video intelligent transmission algorithm was designed,which can deal with heterogeneous network environment.And then,an effective end-to-end on-device training framework was designed to decrease server overhead,and a detailed evaluation and analysis on the neural network design and structure was provided.Experimental results show that the proposed algorithm can effectively predict heterogeneous network bandwidth,and reduces the bandwidth prediction error by 48.48%,comparing with the representative streaming control algorithm.The effective bandwidth prediction can further improve the user QoE,such as improving the video fluency by 60.65%,and improving the video quality by 16.52%.Besides,the analysis can provide empirical insights for further study,and holds potential to push the development of intelligent video applications.

关 键 词:实时视频 自适应流控 体验质量 强化学习 终端训练 

分 类 号:TP393[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象