检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:戴皓云 周楠 任香 罗飘异 易尚辉[1] 全梅芳[1] 查文婷[1] 吕媛[1] Dai Haoyun;Zhou Nan;Ren Xiang;Luo Piaoyi;Yi Shanghui;Quan Meifang;Zha Wenting;Lyu Yuan(Key Laboratory of Molecular Epidemiology of Hunan Province,School of Medicine,Hunan Normal University,Changsha 410007,Hunan,China)
机构地区:[1]湖南师范大学医学院“分子流行病学”湖南省重点实验室,湖南长沙410007
出 处:《疾病监测》2022年第10期1338-1345,共8页Disease Surveillance
基 金:湖南省科技创新重点工程(No.2020SK1015-3);湖南省自然科学基金(No.2020JJ4059);湘教通[2018]505号(No.JG2018B041);长沙市科技计划(No.kq2001025,No.kq1907130);湖南省社会科学成果评审委员会项目(No.XSP21YBC338);湖南师范大学医学院开放课题(No.KF2021012)。
摘 要:目的分析我国2010—2019年流行性感冒的流行特征和分布规律,预测各亚型流感发病趋势。方法采用ARIMA乘积季节模型,对流感数据进行原始序列预处理、模型识别、参数估计和统计建模,预测流感发病趋势。结果构建流感自回归移动平均模型(ARIMA)乘积季节模型,预测模型为ARIMA(1,2,1)(0,1,1)_(12),数据信息提取充分(Q=14.257,P>0.05),相对误差约10%;甲型流感预测模型为ARIMA(2,1,1)(0,2,2)_(12),数据信息提取充分(Q=13.236,P>0.05),预测2018年12月至2019年3月的甲型流感发病率较高,4月开始,发病率迅速下降,与实际情况相似,相对误差控制在10%以内;乙型流感预测模型为ARIMA(1,2,1)(1,0,1)_(12),数据信息提取充分(Q=9.841,P>0.05),但模型预测2019年乙型流感发病率较低,相对误差较高。结论流感、甲型流感ARIMA乘积季节模型预测效果较好;乙型流感预测模型数据信息提取充分,但相对误差较高,可能与乙型流感发病无明显的长期趋势有关。Objective To analyze the epidemiologic characteristics and distribution of influenza in China from 2010 to 2019,and predict the incidence trends of all types of influenza.Methods Seasonal ARIMA model was used for original series pre-process,model identification,parameters estimation and statistical modeling to predict the incidence trend of influenza.Results The influenza time series model constructed was ARIMA(1,2,1)(0,1,1)_(12),and the data information was fully extracted(Q=14.257,P>0.05),the relative error was about 10%.Influenza A prediction model was ARIMA(2,1,1)(0,2,2)_(12),the data information was fully extracted(Q=13.236,P>0.05).The predicted incidence of influenza A was high from December 2018 to March 2019,and the incidence decreased rapidly from April,similar to the actual situation.Relative error was controlled within 10%;The influenza B prediction model was ARIMA(1,2,1)(1,0,1)_(12),and the data information was fully extracted(Q=9.841,P>0.05),but the incidence of influenza B in 2019 predicted by the model was low and the relative error was high.Conclusion Influenza and influenza A seasonal ARIMA models had better prediction effects.The data information of influenza B prediction model was fully extracted,but the relative error was high,which might be related to the absence of obvious long-term trend of influenza B incidence.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.30