检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:戴剑博 苏宏华[3] 傅玉灿[3] 丁文锋[3] 司垒[1,2] 陈佳佳 DAI Jianbo;SU Honghua;FU Yucan;DING Wenfeng;SI Lei;CHEN Jiajia(College of Mechanical and Electrical Engineering,China University of Mining and Technology,Xuzhou 221116;Jiangsu Collaborative Innovation Center of Intelligent Mining Equipment,China University of Mining and Technology,Xuzhou 221008;College of Mechanical and Electronical Engineering,Nanjing University of Aeronautics and Astronautics,Nanjing 210016;College of Mechanical and Electronical Engineering,Nanjing Forestry University,Nanjing 210037)
机构地区:[1]中国矿业大学机电工程学院,徐州221116 [2]中国矿业大学矿山智能采掘装备省部共建协同创新中心,徐州221008 [3]南京航空航天大学机电学院,南京210016 [4]南京林业大学机械电子工程学院,南京210037
出 处:《机械工程学报》2022年第21期316-330,共15页Journal of Mechanical Engineering
基 金:江苏省基础研究计划(自然科学基金)(BK20210495);中国博士后科学基金(2020M681761);江苏高校优势学科建设工程(苏政办发〔2018〕87号)资助项目。
摘 要:碳化硅陶瓷高速磨削过程中,磨粒对工件材料强力冲击,应变率剧增、复杂显微结构对应力波传送响应转变,材料力学行为发生变化,目前高速磨削对材料去除机制影响的物理本质认识还不清楚。为此,开展磨削速度对SiC陶瓷磨削裂纹损伤影响机制研究。通过单颗磨粒磨削SiC陶瓷试验,分析了磨削速度对SiC陶瓷磨削表面形貌、磨削亚表面裂纹损伤深度、磨削力和磨削比能的影响规律。试验结果表明,当SiC陶瓷材料以脆性方式去除时,磨削速度对裂纹损伤影响最为显著,随着磨削速度从20 m/s增加到160 m/s,磨削亚表面裂纹损伤深度从12.1µm快速降低到6µm。采用Voronoi法建立了金刚石磨削多晶SiC陶瓷有限元仿真模型,当磨粒切厚为0.3µm,磨削亚表面损伤以微裂纹为主;当磨粒切厚为1µm时,随着磨削速度增加,磨削亚表面裂纹损伤深度从14.7µm降低到4.6µm,磨削亚表面宏观沿晶裂纹逐渐变为微观裂纹。基于位错理论和冲击动力学理论,揭示了高速磨削过程中位错密度的增加和晶界反射应力波对应力场削弱作用是高速磨削SiC陶瓷裂纹损伤“趋肤效应”产生的机理。In the high speed grinding of silicon carbide ceramics,the grains have a strong impact on the workpiece,the strain rate increases sharply,the complex microstructure of SiC ceramics alters the response to stress wave transmission,and mechanical behavior changes.The physical essence of the effect of strain rate on the material removal mechanism is not clear during high speed grinding process.Hence,the effect of grinding wheel speed on the grinding crack damage were investigated with the experimental and numerical single diamond grinding tests.The experimental results show that the grinding speed has a significant effect on the ground subsurface crack damage when the SiC ceramics removed in brittle mode.With the grinding speed increasing from 20 m/s to 160 m/s,the depth of subsurface crack damage decreases from 12.1µm to 6µm.A finite element model based on typical Voronoi tessellation method has been established for diamond grinding polycrystalline SiC ceramics.It is found that ground subsurface damage is mainly microcracks under the chip thickness of 0.3µm,and the depth of subsurface crack damage decreases sharply from 14.7µm to 4.6µm with the increasing grinding speed under the chip thickness of 1µm.Based on the principles of dislocation and shock wave dynamics,the mechanism of“skin effect”of subsurface crack damage was analyzed.The increasing dislocation density and reflected stress wave by the grain boundaries,leading to the intensity of stress field rapidly dissipated,were recognized as the dominant factors resulting in the“skin effect”of subsurface damage.
分 类 号:TG156[金属学及工艺—热处理]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:52.15.143.11