On the Radius of Analyticity of Solutions to 3D Navier-Stokes System with Initial Data in L^(p)  

在线阅读下载全文

作  者:Ruilin HU Ping ZHANG 

机构地区:[1]Academy of Mathematics&Systems Science,the Chinese Academy of Sciences,Beijing 100190,China [2]Academy of Mathematics&Systems Science and Hua Loo-Keng Key Laboratory of Mathematics,the Chinese Academy of Sciences,Beijing 100190,China [3]School of Mathematical Sciences,University of Chinese Academy of Sciences,Beijing 100049,China

出  处:《Chinese Annals of Mathematics,Series B》2022年第5期749-772,共24页数学年刊(B辑英文版)

基  金:supported by the National Natural Science Foundation of China(Nos.11731007,12031006,11688101);the National Key R&D Program of China(No.2021YFA1000800);K.C.Wong Education Foundation。

摘  要:Given initial data u0 ∈ L^(p)(R^(3)) for some p in [3,18/5 [,the auhtors first prove that3 D incompressible Navier-Stokes system has a unique solution μ=μL+v with μL=^(def)e^(t△)μ_(0) and ν∈L^(∞)([0,T];H^(5/2)-^(6/p)∩L^(1)([0,T];H^(9/2-6/p) for some positive time T.Then they derive an explicit lower bound for the radius of space analyticity of v,which in particular extends the corresponding results in [Chemin,J.-Y.,Gallagher,I.and Zhang,P.,On the radius of analyticity of solutions to semi-linear parabolic system,Math.Res.Lett.,27,2020,1631-1643,Herbst,I.and Skibsted,E.,Analyticity estimates for the Navier-Stokes equations,Adv.in Math.,228,2011,1990-2033] with initial data in H^(s)(R^(3)) for s ∈ [1/2,3/2[.

关 键 词:Incompressible Navier-Stokes equations Radius of analyticity Littlewood-Paley theory 

分 类 号:O175[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象