检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:侯杰[1,2] 李国清[1,2] 修国林[3] 胡乃联[1,2] 强兴邦 HOU Jie;LI Guo-qing;XIU Guo-lin;HU Nai-lian;QIANG Xing-bang(School of Civil and Resource Engineering,University of Science and Technology Beijing,Beijing 100083,China;Key Laboratory of High-Efficient Mining and Safety of Metal Mines,Ministry of Education,Beijing 100083,China;Shandong Gold Group Co.,Ltd,Jinan 250013,China)
机构地区:[1]北京科技大学土木与资源工程学院,北京100083 [2]金属矿山高效开采与安全教育部重点实验室,北京100083 [3]山东黄金集团有限公司,济南250013
出 处:《工程科学学报》2023年第5期693-700,共8页Chinese Journal of Engineering
基 金:国家自然科学基金资助项目(52074022);中央高校基本科研业务费专项资金资助项目(FRF-TP-20-001A1)。
摘 要:为了实现金属地下矿山开采由浅部转向深部过程中产能平稳接续,以三山岛金矿为研究对象,结合矿山多区段联合开采的复杂生产格局,综合考虑产能均衡、品位均衡与各项生产系统能力限制等约束,构建以多矿区资源综合开采价值最大为目标的产能接续规划优化模型,在Python和Gurobi环境下实现优化模型构建与解算.优化结果表明,通过对矿山深部转产过程中的产能接续进行规划优化,得到的最佳产能接续与生产任务分配方案可以在有效保证多矿区协同开采、产能均衡稳定的同时,提升矿山开采的综合经济效益.With the rapid depletion of shallow mineral resources, an increasing number of mines are stepping into deep mining to ensure resource continuity, which generally forms a coordinated production model that includes both existing shallow production systems and new deep projects. Given the complex production patterns of both multi-mining areas and multi-sections formed during the process of deep mining, how to achieve geological resource continuity, stable production capacity, balanced supply grade, and sustainable economic benefits are the key issue to be addressed in the mining scheme during the transition to deep-area. When an underground mine transitions to deep mining, it is necessary to steadily advance the production task and maintain the steady growth of metal quantity and economic benefit. Therefore, to maintain production continuity and stability, it is necessary to optimize the production plan for underground metal mines. Considering the situation of multi-section mining submontanely, the Sanshandao gold mine is used as a case study to investigate the complex production layout of multi-section mining simultaneously subjected to constraints of production capacity balance, grade requirements, and other production system capacities through in-depth analysis of the production capacity continuity in the process of mining transition to deep mineral resources. An optimization model is constructed aiming at maximizing the comprehensive resource exploitation value of multi-section mining. A mathematical planning model for the continuation and optimal allocation of production capacity during the transition period of deep mining is constructed with the optimization goal of maximizing the comprehensive exploitation return of resources from multiple mining areas, taking the constraints of overall capacity succession,balanced output grade, and capacity limits of each mining area into account. Following the solution of the Sanshandao gold mine’s production capacity, succession during the transition to deep-area is obta
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.30