检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:孙敏捷 罗兵 李振兴 霍星星 王云 SUN Min-jie;LUO Bing;LI Zhen-xing;HUO Xing-xing;WANG Yun(Department of Operating Room,The Traditional Chinese Medicine Hospital of Anhui,Hefei Anhui 230020,China;Department of Clinical Laboratory,The Traditional Chinese Medicine Hospital of Anhui,Hefei Anhui 230020,China;Department of Blood Transfusion,The Traditional Chinese Medicine Hospital of Anhui,Hefei Anhui 230020,China;Department of Scientific Research Center,The Traditional Chinese Medicine Hospital of Anhui,Hefei Anhui 230020,China;Department of Hospital Infection Management,Anhui No.2 Provincial People′s Hospital,Hefei Anhui 230041)
机构地区:[1]安徽省第二人民医院手术室,安徽合肥230041 [2]安徽省第二人民医院检验科,安徽合肥230041 [3]安徽省第二人民医院输血科,安徽合肥230041 [4]安徽省中医院科研中心,安徽合肥230020 [5]安徽省第二人民医院院感科,安徽合肥230041
出 处:《蚌埠医学院学报》2022年第12期1733-1736,共4页Journal of Bengbu Medical College
基 金:国家自然科学基金项目(81803938);安徽省高校自然科学研究重点项目(KJ2019A1099);安徽省高校自然科学研究一般项目(ZR2019B04)。
摘 要:目的:构建重症监护病房(ICU)住院病人死亡Nomogram预测模型,为降低ICU住院病人死亡率提供指导。方法:回顾性分析ICU 1133例住院病人临床资料,采用logistic回归分析筛选ICU住院病人死亡危险因素,并构建可视化Nomogram预测模型,采用决策曲线分析(DCA)对简单评价模型和复杂评价模型进行比较。结果:多因素logistic回归分析显示医院感染(OR=1.876,95%CI:1.037~3.043)、高血压(OR=1.133,95%CI:1.090~1.177)、糖尿病(OR=1.141,95%CI:1.064~1.209)、输血(OR=1.357,95%CI:1.102~3.421)、低GCS评分(OR=0.953,95%CI:0.917~0.991)、APACHEⅡ评分(OR=2.638,95%CI:0.794~8.692)、气管切开(OR=3.973,95%CI:2.386~6.615)、气管插管(OR=1.562,95%CI:1.163~2.266)、动静脉插管(OR=1.365,95%CI:1.067~3.172)、动静脉插管时间(OR=1.825,95%CI:1.224~2.979)、导尿管插管(OR=2.016,95%CI:1.050~3.870)、导尿管插管时间(OR=2.689,95%CI:1.724~4.195)为ICU住院病人死亡独立危险因素(P<0.05)。根据多因素logistic回归结果建立Nomogram模型,经验证预测模型一致性良好(C-index=0.748,P<0.05)。DCA显示阈值概率在(0.09~0.49)范围内,复杂模型的净利润高于简单模型,阈值概率在(0.49~0.87)范围内,简单模型的净利润高于复杂模型。结论:成功建立预测ICU住院病人死亡的Nomogram预测模型。Objective:To establish a Nomogram prediction model for inpatient mortality in intensive care units(ICU),and to provide guidance for reducing inpatient mortality in ICU.Methods:Clinical data of 1133 inpatients in ICU were analyzed retrospectively.Death risk factors of inpatients in ICU were screened by logistic regression analysis.Nomogram prediction model was constructed.Decision curve analysis(DCA)was used to compare simple and complex evaluation model.Results:Multivariate logistic regression analysis showed that hospital infection(OR=1.876,95%CI:1.037-3.043),hypertension(OR=1.133,95%CI:1.090-1.177),diabetes meillitus(OR=1.141,95%CI:1.064-1.209),blood transfusion(OR=1.357,95%CI:1.102-3.421),low GCS score(OR=0.953,95%CI:0.917-0.991),APACHEⅡscore(OR=2.638,95%CI:0.794-8.692),tracheotomy(OR=3.973,95%CI:2.386-6.615),endotracheal intubation(OR=1.562,95%CI:1.163-2.266),arteriovenous cannulation(OR=1.365,95%CI:1.067-3.172),days of arteriovenous cannulation(OR=1.825,95%CI:1.224-2.979),urinary catheter intubation(OR=2.016,95%CI:1.050-3.870),and days of urinary catheter intubation(OR=2.689,95%CI:1.724-4.195)were independent risk factors for death of hospitalized ICU patients(P<0.05).Nomogram model was established according to multivariate logistic regression results,and it was verified that the prediction model had good consistency(C-index=0.748,P<0.05).DCA showed that the threshold probability was within the range of(0.09-0.49),and the net benefit of the complex model was higher than that of the simple model.The threshold probability was within the range of(0.49-0.87),the net benefit of the simple model was higher than that of the complex model.Conclusions:The Nomogram model is successfully established to predict the death of ICU inpatients.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15