检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Cai-Yi Tang Sheng Peng Zhi-Qin Zhao Bo Jiang
机构地区:[1]Science and Technology on Electronic Information Control Laboratory,Chengdu 610036 [2]School of Electronic Science and Engineering,University of Electronic Science and Technology of China,Chengdu 611731 [3]54th Research Institute of China Electronics Technology Group,Shijiazhuang 050081
出 处:《Journal of Electronic Science and Technology》2022年第4期416-424,共9页电子科技学刊(英文版)
基 金:This work was supported by the National Natural Science Foundation of China under Grants No.61871083 and No.61721001.
摘 要:The direction-of-arrival(DOA)estimation problem can be solved by the methods based on sparse Bayesian learning(SBL).To assure the accuracy,SBL needs massive amounts of snapshots which may lead to a huge computational workload.In order to reduce the snapshot number and computational complexity,a randomize-then-optimize(RTO)algorithm based DOA estimation method is proposed.The“learning”process for updating hyperparameters in SBL can be avoided by using the optimization and Metropolis-Hastings process in the RTO algorithm.To apply the RTO algorithm for a Laplace prior,a prior transformation technique is induced.To demonstrate the effectiveness of the proposed method,several simulations are proceeded,which verifies that the proposed method has better accuracy with 1 snapshot and shorter processing time than conventional compressive sensing(CS)based DOA methods.
关 键 词:Compressive sensing(CS) randomize-then-optimize(RTO) single snapshot sparse signal reconstruction
分 类 号:TN911.7[电子电信—通信与信息系统]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.33