基于紧凑型RGB颜色传感器纸币券别识别系统设计  被引量:2

Design of Banknote Recognition System Based on Compact RGB Color Sensor

在线阅读下载全文

作  者:吴杰 倪林安 潘大钧 WU Jie;NI Lin’an;PAN Dajun(Wenzhou Institute of Quality Technology Testing Science,Wenzhou 325025;Zhejiang Ranpeng Electronics Co.,Ltd.,Wenzhou 325400;Wenzhou Institute of Special Equipment Testing Science,Wenzhou 325007)

机构地区:[1]温州市质量技术检测科学研究院,温州325025 [2]浙江然鹏电子有限公司,温州325400 [3]温州市特种设备检测科学研究院,温州325007

出  处:《现代制造技术与装备》2022年第11期109-111,共3页Modern Manufacturing Technology and Equipment

基  金:温州市基础性工业科技项目(G2020030)。

摘  要:为了提高纸币鉴别设备的识别能力,有效降低成本,提升鉴别设备对纸币的适应性,提出了一种纸币面额识别方法。该方法综合利用纸币颜色空间特征,通过分析纸币特征,提出利用基于色彩空间转换算法提取纸币特征,利用多通道采集融合算法,设计了一套性价比高的纸币识别平台。它的主要结构以ARM(Advanced RISC Machines)芯片为核心控制,通过S10917-35GT颜色传感器进行特征信息采集,利用改进六角锥体模型(Hue,Saturation,Value,HSV)算法和建立的样币数据库进行匹配,最终在显示界面呈现纸币面值。实验结果表明,提出的方法具有很强的纸币识别能力。In order to improve the recognition ability of banknote identification equipment, effectively reduce the cost and improve the adaptability of identification equipment to banknotes, a banknote denomination recognition method is proposed,which comprehensively utilizes the color space characteristics of banknotes. By analyzing the characteristics of banknotes, a set of cost-effective banknote recognition platform is designed by using color space conversion algorithm as banknote feature extraction and multi-channel acquisition and fusion algorithm. The main structure is to take Advanced RISC Machines(ARM) chip as the core control, collect characteristic information through S10917-35GT color sensor, match with the improved Hue, Saturation,Value(HSV) algorithm and the established sample currency database, and finally present the face value of banknotes on the display interface. The experimental results show that the proposed method has strong paper money recognition ability.

关 键 词:纸币识别 颜色传感器 色彩空间转换 

分 类 号:TP212.9[自动化与计算机技术—检测技术与自动化装置]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象