检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:苏健 宋汉江 宋福元[1] 张国磊[1] SU Jian;SONG Hanjiang;SONG Fuyuan;ZHANG Guolei(College of Power and Energy Engineering,Harbin Engineering University,Harbin 150001,China;The 92942 Unit of PLA,Beijing 100161,China)
机构地区:[1]哈尔滨工程大学动力与能源工程学院,黑龙江哈尔滨150001 [2]中国人民解放军92942部队,北京100161
出 处:《中国舰船研究》2022年第6期96-102,共7页Chinese Journal of Ship Research
摘 要:[目的]为了提高船用动力系统的故障诊断水平,基于卷积神经网络对船用增压锅炉进行实时诊断研究。[方法]首先,基于GSE平台开发船用增压锅炉的仿真程序,获得模拟故障数据,在此基础上利用卷积神经网络方法建立增压锅炉的故障诊断模型;然后,根据温度、流量等参数的变化趋势,结合先验知识与机器学习方法进行故障识别,并采用混淆矩阵、精确度等评价标准对该方法进行性能评估。[结果]根据特征提取后的数据集与原始数据集的对比结果,模型输出结果的稳定性与模型的泛化能力均得以优化提升,整体故障分类精度可达99.53%。[结论]研究成果可为船用动力系统的智能化监测提供参考。[Objectives]In order to improve the fault diagnosis level of marine power systems,this paper studies the real-time fault diagnosis of a marine supercharged boiler based on a convolutional neural network(CNN).[Methods]First,the simulation program of the marine supercharged boiler is developed based on the GSE platform,and the simulation fault data is obtained.The fault diagnosis model of the boiler is then established using the CNN method.Next,through the change trends of temperature,flow and other parameters,combined with a priori knowledge and the machine learning method,fault identification is carried out.Lastly,the performance of the method is evaluated against criteria such as confusion matrix and accuracy.[Results]According to the comparison results between the feature extracted dataset and the original dataset,the stability of the model output results and the generalization ability of the model are optimized and improved,with an overall fault classification accuracy reaching 99.53%.[Conclusion]The results of this study can provide valuable references for the intelligent monitoring of marine power systems.
分 类 号:U664.11[交通运输工程—船舶及航道工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.133.100.106