An Efficient Reinforcement Learning Game Framework for UAV-Enabled Wireless Sensor Network Data Collection  

在线阅读下载全文

作  者:Tong Ding Ning Liu Zhong-Min Yan Lei Liu Li-Zhen Cui 丁桐;刘宁;闫中敏;刘磊;崔立真(School of Software,Shandong University,Jinan 250101,China)

机构地区:[1]School of Software,Shandong University,Jinan 250101,China

出  处:《Journal of Computer Science & Technology》2022年第6期1356-1368,共13页计算机科学技术学报(英文版)

基  金:the National Natural Science Foundation of China under Grant No.61972230;the Natural Science Foundation of Shandong Province of China under Grant No.ZR2021LZH006.

摘  要:With the developing demands of massive-data services,the applications that rely on big geographic data play crucial roles in academic and industrial communities.Unmanned aerial vehicles(UAVs),combining with terrestrial wireless sensor networks(WSN),can provide sustainable solutions for data harvesting.The rising demands for efficient data collection in a larger open area have been posed in the literature,which requires efficient UAV trajectory planning with lower energy consumption methods.Currently,there are amounts of inextricable solutions of UAV planning for a larger open area,and one of the most practical techniques in previous studies is deep reinforcement learning(DRL).However,the overestimated problem in limited-experience DRL quickly throws the UAV path planning process into a locally optimized condition.Moreover,using the central nodes of the sub-WSNs as the sink nodes or navigation points for UAVs to visit may lead to extra collection costs.This paper develops a data-driven DRL-based game framework with two partners to fulfill the above demands.A cluster head processor(CHP)is employed to determine the sink nodes,and a navigation order processor(NOP)is established to plan the path.CHP and NOP receive information from each other and provide optimized solutions after the Nash equilibrium.The numerical results show that the proposed game framework could offer UAVs low-cost data collection trajectories,which can save at least 17.58%of energy consumption compared with the baseline methods.

关 键 词:wireless sensor network efficient data collection deep reinforcement learning game theory 

分 类 号:TP212.9[自动化与计算机技术—检测技术与自动化装置] TN929.5[自动化与计算机技术—控制科学与工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象