检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:武珊 WU Shan(Qinghai Higher Vocational and Technical College,Haidong 810600,China)
出 处:《江西农业学报》2022年第10期108-115,共8页Acta Agriculturae Jiangxi
摘 要:采用融合ISODATA聚类算法与YOLO-v3网络构建果蔬虫害识别模型,利用预选框提取方法分辨栅格害虫目标个数,并加入空间金字塔池化结构,以提高图像特征提取的稳定性。在害虫种类识别的测试中,优化的YOLO-v3网络mAP为88.92%,比Faster-RCNN高3.7个百分点。而在果蔬图像背景测试中,优化的YOLO-v3网络mAP为87.32%,比传统YOLO-v3模型高4.4个百分点。试验表明:优化的YOLO-v3网络对于图像噪声抗干扰性更强,检测精度高的同时保持了稳定的检测效率。The fruit and vegetable pest identification model was constructed by integrating ISODATA clustering algorithm and YOLO-v3 network.The pre selection box extraction method was used to distinguish the number of grid pest targets and add the spatial pyramid pool structure to improve the stability of image feature extraction.In the test of pest species identification,the optimized YOLO-v3 network map was 88.92%,which was 3.7 percentage points higher than Fast-RCNN.In the fruit and vegetable image background test,the optimized YOLO-v3 network map was 87.32%,which was 4.4 percentage points higher than the traditional YOLO-v3 model.Experiments showed that the optimized YOLO-v3 network had stronger resistance to image noise interference,high detection accuracy and stable inspection efficiency.
关 键 词:虫害防治 YOLO-v3网络 迭代自组织聚类算法 空间金字塔池化
分 类 号:S431.9[农业科学—农业昆虫与害虫防治]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.49