检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:陈伟[1] 蔡占川[2] 李坚 梁延研[2] 熊刚强 宋瑞霞[5] CHEN Wei;CAI Zhan-chuan;LI Jian;LIANG Yan-yan;XIONG Gang-qiang;SONG Rui-xia(School of Artificial Intelligence and Computer Science,Jiangnan University,Wuxi Jiangsu 214122,China;School of Computer Science and Engineering,Macao University of Science and Technology,Macao 999078,China;Faculty of Applied Sciences,Macao Polytechnic University,Macao 999078,China;School of Information Engineering,Guangdong Medical University,Dongguan Guangdong 523808,China;College of Sciences,North China University of Technology,Beijing 100044,China)
机构地区:[1]江南大学人工智能与计算机学院,江苏无锡214122 [2]澳门科技大学计算机科学与工程学院,中国澳门999078 [3]澳门理工大学应用科学学院,中国澳门999078 [4]广东医科大学信息工程学院,广东东莞523808 [5]北方工业大学理学院,北京100144
出 处:《图学学报》2022年第6期1002-1017,共16页Journal of Graphics
摘 要:传统的Fourier级数在逼近间断信号时因Gibbs现象的干扰,会产生比较大的误差。针对此问题,国内学者齐东旭教授带领的课题组提出了非连续正交函数系的研究课题,其中U-系统和V-系统是两类典型的非连续完备正交函数系。从数学理论上来说,U-系统和V-系统分别是对著名的Walsh函数和Haar函数由分段常数向分段k次多项式进行推广的结果,其最重要的特点是函数系中既有光滑函数又有各个层次的间断函数。因此,U,V-系统可以处理连续和间断并存的信息,在一定程度上弥补了Fourier分析和连续小波的缺憾。本文从理论与应用2个方面对U,V-系统进行了综述。在理论方面,首先介绍了单变量U-系统与V-系统各自的构造方法,其次介绍三角域上U,V-系统的构造方法,最后介绍U,V-系统的主要性质。在应用方面,介绍了若干具有代表性的应用案例。The traditional Fourier analysis and continuous wavelet method will produce relatively enormous errors due to the interference of Gibbs phenomenon. To solve this problem, Qi Dongxu proposed the research topic of discontinuous orthogonal function systems, among which U-system and V-system are two typical discontinuous complete orthogonal function systems. In terms of the mathematical theory, U-system and V-system are the results of the extension of the well-known Walsh function and Haar function from piecewise constant to piecewise k degree polynomial, respectively. The most important feature of U-system is that there are both smooth functions and discontinuous functions at various levels in the function system. Therefore, U-and V-systems can process both continuous and discontinuous information, making up for the shortcomings of Fourier analysis and continuous wavelet to a certain extent. This paper reviewed U-and V-systems from two aspects: theory and application. Theoretically,firstly, the construction methods of univariate U-system and V-system were introduced, respectively, then the construction methods of V-system on triangular domain were introduced, and finally the main properties of U-and V-systems were introduced. In terms of application, some representative cases of applications were introduced.
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.13