检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Linlu Tian Yongxia Wu Hee-Jin Choi Xiaohui Sui Xinlei Li M.Hanief Sofi Mohamed Faisal Kassir Xiao Chen Shikhar Mehrotra Besim Ogretmen Xue-zhong Yu
机构地区:[1]Department of Microbiology&Immunology,Medical University of South Carolina,Charleston,SC,USA [2]Department of Microbiology&Immunology,Medical College of Wisconsin,Milwaukee,WI,USA [3]Department of Medicine,Medical College of Wisconsin,Milwaukee,WI,USA [4]Department of Biochemistry&Molecular Biology,Medical University of South Carolina,Charleston,SC,USA [5]Department of Surgery,Medical University of South Carolina,Charleston,SC,USA [6]Hollings Cancer Center,Medical University of South Carolina,Charleston,SC,USA [7]The Cancer Center,Medical College of Wisconsin,Milwaukee,WI,USA
出 处:《Cellular & Molecular Immunology》2022年第11期1235-1250,共16页中国免疫学杂志(英文版)
基 金:This work is supported in part by SmartState Cancer Stem Cell Biology&Therapy Program and by R01 grants from the National Institutes of Health,including AI118305,HL140953 and CA258440(X.-Z.Y.).
摘 要:Graft-versus-host disease (GVHD) significantly contributes to patient morbidity and mortality after allogeneic hematopoietic cell transplantation (allo-HSCT). Sphingosine-1-phosphate (S1P) signaling is involved in the biogenetic processes of different immune cells. In the current study, we demonstrated that recipient sphingosine kinase 1 (Sphk1), but not Sphk2, was required for optimal S1PR1-dependent donor T-cell allogeneic responses by secreting S1P. Using genetic and pharmacologic approaches, we demonstrated that inhibition of Sphk1 or S1PR1 substantially attenuated acute GVHD (aGVHD) while retaining the graft-versus-leukemia (GVL) effect. At the cellular level, the Sphk1/S1P/S1PR1 pathway differentially modulated the alloreactivity of CD4+ and CD8+ T cells;it facilitated T-cell differentiation into Th1/Th17 cells but not Tregs and promoted CD4+ T-cell infiltration into GVHD target organs but was dispensable for the CTL activity of allogeneic CD8+ T cells. At the molecular level, the Sphk1/S1P/S1PR1 pathway augmented mitochondrial fission and increased mitochondrial mass in allogeneic CD4+ but not CD8+ T cells by activating the AMPK/AKT/mTOR/Drp1 pathway, providing a mechanistic basis for GVL maintenance when S1P signaling was inhibited. For translational purposes, we detected the regulatory efficacy of pharmacologic inhibitors of Sphk1 and S1PR1 in GVHD induced by human T cells in a xenograft model. Our study provides novel mechanistic insight into how the Sphk1/S1P/S1PR1 pathway modulates T-cell alloreactivity and validates Sphk1 or S1PR1 as a therapeutic target for the prevention of GVHD and leukemia relapse. This novel strategy may be readily translated into the clinic to benefit patients with hematologic malignancies and disorders.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.15.204.106