检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:王艳[1] 郑华荣[2] 罗祎斐 佴静[4] 王清涛[5] 周睿[5] 梁玉芳[5] 宋彪 黄大伟 Wang Yan;Zheng Huarong;Luo Yifei;Er Jing;Wang Qingtao;Zhou Rui;Liang Yufang;Song Biao;Huang Dawei(Medicine Laboratory Center,Beijing Jishuitan Hospital,Beijing 100035,China;National Institute of Metrology,Beijing 100013,China;Inner Mongolia Zhihui Big data Institute,Hohhot 010020,China;Department of Clinical Laboratory,Beijing Hepingli Hospital,Beijing 100013,China;Department of Clinical Laboratory,Beijing Chaoyang Hospital Affiliated to Capital Medical University,Beijing 100020,China;Department of Clinical Laboratory,Beijing Longfu Hospital,Beijing 100010,China)
机构地区:[1]北京积水潭医院医学检验中心,北京100035 [2]中国计量科学研究院,北京100013 [3]内蒙古智汇大数据研究院,呼和浩特010020 [4]北京市和平里医院检验科,北京100013 [5]首都医科大学附属北京朝阳医院检验科,北京100020 [6]北京市隆福医院检验科,北京100010
出 处:《中华检验医学杂志》2022年第12期1201-1206,共6页Chinese Journal of Laboratory Medicine
基 金:北京积水潭医院“学科骨干”计划(XKGG202125);北京市临床重点专科卓越项目(检验科)。
摘 要:目的探讨利用常规检验数据建立肺结核疾病鉴别诊断模型的应用价值。方法采用回顾性调查研究方法,收集2015年5月至2021年11月就诊于北京积水潭医院和北京和平里医院初诊为肺结核和其他肺部疾病患者的常规检验数据。共纳入11516例患者数据,通过计算机产生随机数方法以9∶1比例分为训练集和测试集。使用支持向量机、随机森林、K最近邻和逻辑回归4种机器学习算法进行模型测试和特征选择,采用十折交叉验证法验证模型诊断准确度,并采用受试者工作特征(ROC)曲线下面积(AUC)评价模型诊断效能。结果本研究选择随机森林作为最优机器学习算法构建肺结核鉴别诊断的最佳特征模型。通过模型特征重要性排序,选择37个非特异性检验项目构成肺结核鉴别诊断模型,其验证集和测试集曲线下面积分别为0.747和0.736,敏感度为68.03%和68.75%,特异度为70.91%和67.90%,准确度为70.30%和68.12%。结论基于机器学习算法利用常规检测数据是肺结核疾病鉴别诊断的一个有效工具,但其应用价值还有待于更多医疗机构数据做进一步验证。Objective To investigate the application value of establishing the differential diagnosis model of pulmonary tuberculosis using routine laboratory data.Methods The retrospective study was conducted.The routine laboratory data of newly diagnosed patients with pulmonary tuberculosis and other pulmonary diseases in Beijng Jishuitan Hospital and Beijing Hepingli Hospital from May 2015 to November 2021were collected.According to the random numbers showed in the computer,all the 11516 patients were divided into training dataset and test dataset with a ratio of 9∶1.Four machine learning algorithms,Support Vector Machine,Random Forest,K-Nearest Neighbor and Logistic Regression,were used to build models and select features.The diagnostic accuracy of each model was verified by using the 10-fold cross-validation method and the performance of each model was evaluated by using the receptor operator of characteristic(ROC)curve.Results Random Forest was selected as the optimal machine learning algorithm to build the best feature model in the study.According to importance scale of factors,the differential diagnosis model of pulmonary tuberculosis consisting of 37 non-specific test indexes.In the validation set and test set the accuracy and area under curve(AUC)of the models were 0.747 and 0.736,the sensitivity,specificity and accuracy were 68.03%and 68.75%,70.91%and 67.90%,70.30%and 68.12%,respectively.Conclusion A key tool in the differential diagnosis model of pulmonary tuberculosis was established by routine laboratory data in combination with machine learning.The results of this study need to be further verified by more data from medical institutions.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7