检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:杨立安[1] 米进周[2] 李涛[1] 从俊强 邓爱军 YANG Li-an;MI Jin-zhou;LI Tao;CONG Jun-qiang;DENG Ai-jun(Department of Electronic and Automation,Rizhao Steel Holding Group Co.,Ltd.,Rizhao 276800,Shandong,China;Steel-making Engineering Division,China National Heavy Machinery Research Institue Co.,Ltd.,Xi'an 710032,Shanaxi,China;School of Metallurgical Engineering,Anhui University of Technology,Ma'anshan 243002,Anhui,China)
机构地区:[1]日照钢铁控股集团有限公司电控处,山东日照276800 [2]中国重型机械研究院股份公司炼钢工程事业部,陕西西安710032 [3]安徽工业大学冶金工程学院,安徽马鞍山243002
出 处:《连铸》2022年第6期16-20,共5页Continuous Casting
基 金:安徽省自然科学基金项目(2008085QE225)。
摘 要:钢铁产品制造过程中,在线预测铸坯质量缺陷产生位置,并对存在缺陷的铸坯及时下线清理有助于提升连铸连轧生产稳定性,实现钢铁企业节能减排、绿色化生产。然而,连铸生产过程具有多变量、时变性和多态性等特点,必须结合设备、钢种、缺陷的特性,定制铸坯质量缺陷预测模型,才能够准确预测铸坯质量缺陷。因此,将数据通信技术、人工智能技术、C#与Matlab混合编程技术等相结合,建立了智能化铸坯质量在线判定系统,研究了铸坯质量预测模型智能化定制方法,并以板坯纵裂纹预测模型为例,介绍模型定制过程。研究结果表明,该方法能够辅助工艺工程师针对钢种及缺陷智能化定制预测模型,降低模型开发及优化难度,提高铸坯质量预测模型的可靠性。In the process of steel products manufacturing, online prediction of the location of casting billet quality defects and timely offline cleaning of the defective billet are helpful to improve the production stability of continuous casting and rolling, and realize energy saving, emission reduction and green production of iron and steel enterprises.However, the continuous casting process has the characteristics of multivariable, time-varying and polymorphism. Only by combining the characteristics of equipment, steel grade and defects, and customizing the slab quality defect prediction model, can the slab quality defects be accurately predicted.Therefore, combining data communication technology, artificial intelligence technology, C# and Matlab hybrid programming technology, the intelligent online judgment system for continuous casting slab is established, the intelligent customization method of slab quality prediction model is studied, and the customization process is introduced by taking slab longitudinal crack prediction model as an example. The results show that this method can assist process engineers to intelligently customize the prediction model for steel grades and defects, reduce the difficulty of model development and optimization, and improve the reliability of slab quality prediction model.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.128.95.177