基于成本效益分析的公园低影响开发设施布局的遗传算法优化  被引量:4

Genetic algorithm optimization of the layout of low impact development facilities in parks based on cost-benefit analysis

在线阅读下载全文

作  者:李炫颖 谭乐 林辰松[1] 戈晓宇[1] LI Xuanying;TAN Le;LIN Chensong;GE Xiaoyu(School of Landscape Architecture,Beijing Forestry University,Beijing 100083,China;South China University of Technology,Department of Electronic Business,Guangzhou 510006,China)

机构地区:[1]北京林业大学园林学院,北京100083 [2]华南理工大学电子商务系,广州510006

出  处:《给水排水》2022年第12期138-143,共6页Water & Wastewater Engineering

基  金:中央高校基本科研业务费专项资金(2021ZY38);国家自然科学基金项目(31800606);北京市社会科学基金项目(21JCC094);北京市共建项目(2015BLUREE01)。

摘  要:以秦皇岛市栖云山公园为研究对象,在SWMM和NSGA-Ⅱ算法支持下,提出了基于权重成本效益分析的公园LID布局优化框架。优化结果表明:在以径流调蓄量、运营成本和建设用地面积作为优化目标时,遗传算法能够有效完成满足设计效益目标的方案优化,得到3种LID设施(生物滞留池、下沉式绿地、雨水花园)的面积,并且通过熵权-TOPSIS方法证明这种情况下径流调蓄量的权重是决策者最优先考虑的因素。该方法可以帮助决策者基于SWMM模型和NSGA-Ⅱ更科学地平衡施工成本和建成环境效益来选择最佳LID布局方案。This paper presents a framework for optimizing the LID layout of the park based on weighted cost-benefit analysis with the support of SWMM and NSGA-Ⅱalgorithm,based on Quyunshan park in Qinhuangdao city,Hebei province,as the research object.The optimization results demonstrate that the genetic algorithm can effectively accomplish the optimization of the scheme that satisfies the design benefit objectives when runoff storage volume,operation cost and construction land area are used as the optimization objectives,and the area of three LID facilities(bioretention basin,sunken greenbelts and rain garden)is obtained,and the weight of runoff storage volume in this case is proved to be the most preferred factor for decision makers by the entropy-weight-TOPSIS method.This method can help decision-makers more scientifically balance costs and built environment benefits of LID layout options based on SWMM models and genetic algorithms.

关 键 词:低影响开发 LID设施 布局优化 NSGA-Ⅱ算法 熵权-TOPSIS法 

分 类 号:TU992[建筑科学—市政工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象