Theory of Critical Phenomena with Memory  

在线阅读下载全文

作  者:Shaolong Zeng Sue Ping Szeto Fan Zhong 

机构地区:[1]State Key Laboratory of Optoelectronic Materials and Technologies,School of Physics,Sun Yat-Sen University,Guangzhou 510275,China

出  处:《Chinese Physics Letters》2022年第12期1-7,共7页中国物理快报(英文版)

基  金:supported by the National Natural Science Foundation of China(Grant Nos.11575297 and 12175316)。

摘  要:Memory is a ubiquitous characteristic of complex systems,and critical phenomena are one of the most intriguing phenomena in nature.Here,we propose an Ising model with memory,develop a corresponding theory of critical phenomena with memory for complex systems,and discover a series of surprising novel results.We show that a naive theory of a usual Hamiltonian with a direct inclusion of a power-law decaying long-range temporal interaction violates radically a hyperscaling law for all spatial dimensions even at and below the upper critical dimension.This entails both indispensable consideration of the Hamiltonian for dynamics,rather than the usual practice of just focusing on the corresponding dynamic Lagrangian alone,and transformations that result in a correct theory in which space and time are inextricably interwoven,leading to an effective spatial dimension that repairs the hyperscaling law.The theory gives rise to a set of novel mean-field critical exponents,which are different from the usual Landau ones,as well as new universality classes.These exponents are verified by numerical simulations of the Ising model with memory in two and three spatial dimensions.

关 键 词:CRITICAL HAMILTONIAN SCALING 

分 类 号:O413[理学—理论物理]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象