基于LSTM的CAN入侵检测模型研究  被引量:10

Research on LSTM-Based CAN Intrusion Detection Model

在线阅读下载全文

作  者:银鹰[1,2] 周志洪[1,2] 姚立红 YIN Ying;ZHOU Zhihong;YAO Lihong(Institute of Cyber Science and Technology,Shanghai Jiao Tong University,Shanghai 200240,China;Shanghai Key Laboratory of Integrated Administration Technologies for Information Security,Shanghai 200240,China;School of Cyber Science and Engineering,Shanghai Jiao Tong University,Shanghai 200240,China)

机构地区:[1]上海交通大学网络安全技术研究院,上海200240 [2]上海市信息安全综合管理技术研究重点实验室,上海200240 [3]上海交通大学网络空间安全学院,上海200240

出  处:《信息网络安全》2022年第12期57-66,共10页Netinfo Security

基  金:国家自然科学基金[U20B2048]。

摘  要:车载控制器局域网(Controller Area Network,CAN)连接着智能网联汽车系统的核心电子控制单元,对于保证汽车系统的安全性至关重要。由于其缺乏足够的信息安全措施,容易遭受拒绝服务(Denial of Service,DoS)攻击、重放攻击、模糊攻击等,给汽车系统及驾乘人员带来严重安全威胁。文章通过分析车载CAN面临的信息安全威胁,提取CAN报文在报文ID、时间间隔、数据字段中的通信特征,提出一种基于长短期记忆(Long Short Term Memory,LSTM)的CAN入侵检测模型,该模型能有效保留CAN报文的时序特征,在CAN遭受攻击时检测攻击行为以及对应的攻击类型。实验结果表明,该模型的攻击检测精度达99.99%。The controller area network(CAN) is connected to the core electronic control units of the intelligent networked automobile system, which is crucial to ensure the safety of the vehicle system. But it is vulnerable to denial of service(DoS) attack, replay attack and fuzzy attack due to its lack of adequate information security measures and thus causes serious security threat for automobiles and drivers. In order to effectively detect whether the CAN bus was attacked,the security threats and communication features were analyzed, and a model of CAN intrusion detection based on long short term memory(LSTM) was proposed, which could preserve the timing characteristics of CAN messages and effectively perform intrusion detection and attack classification. The experimental results show that the detection accuracy of the model is 99.99%.

关 键 词:智能网联汽车 CAN 入侵检测 LSTM 

分 类 号:TP309[自动化与计算机技术—计算机系统结构]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象