HOPE:a heterogeneity-oriented parallel execution engine for inference on mobiles  

在线阅读下载全文

作  者:XIA Chunwei ZHAO Jiacheng CUI Huimin FENG Xiaobing 夏春伟;ZHAO Jiacheng;CUI Huimin;FENG Xiaobing(Institute of Computing Technology,Chinese Academy of Sciences,Beijing 100190,P.R.China;School of Computer Science and Technology,University of Chinese Academy of Sciences,Beijing 100190,P.R.China)

机构地区:[1]Institute of Computing Technology,Chinese Academy of Sciences,Beijing 100190,P.R.China [2]School of Computer Science and Technology,University of Chinese Academy of Sciences,Beijing 100190,P.R.China

出  处:《High Technology Letters》2022年第4期363-372,共10页高技术通讯(英文版)

基  金:Supported by the General Program of National Natural Science Foundation of China(No.61872043)。

摘  要:It is significant to efficiently support artificial intelligence(AI)applications on heterogeneous mobile platforms,especially coordinately execute a deep neural network(DNN)model on multiple computing devices of one mobile platform.This paper proposes HOPE,an end-to-end heterogeneous inference framework running on mobile platforms to distribute the operators in a DNN model to different computing devices.The problem is formalized into an integer linear programming(ILP)problem and a heuristic algorithm is proposed to determine the near-optimal heterogeneous execution plan.The experimental results demonstrate that HOPE can reduce up to 36.2%inference latency(with an average of 22.0%)than MOSAIC,22.0%(with an average of 10.2%)than StarPU and 41.8%(with an average of 18.4%)thanμLayer respectively.

关 键 词:deep neural network(DNN) mobile heterogeneous scheduler parallel computing 

分 类 号:TP18[自动化与计算机技术—控制理论与控制工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象