检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:金家广 唐兴荣[1] JIN Jiaguang;TANG Xingrong(School of Civil Engineering,Suzhou University of Science and Technology,Suzhou 215011)
机构地区:[1]苏州科技大学土木工程学院,江苏苏州215011
出 处:《常州工学院学报》2022年第6期1-8,共8页Journal of Changzhou Institute of Technology
摘 要:实际工程中灌浆套筒接头施工缺陷是不可避免的,为了研究施工缺陷对灌浆套筒接头拉拔性能的影响,采用Abaqus有限元软件建立了带施工缺陷灌浆套筒接头拉拔性能的非线性有限元模型,在已有试验可行性验证的基础上,对带缺陷灌浆套筒接头的拉拔性能进行了模拟分析。分析表明,灌浆套筒接头拉拔承载力随灌浆料体积缺陷率的增加而较大程度地减小。在有限元分析的基础上,提出了考虑灌浆缺陷影响的钢筋与灌浆料界面黏结-滑移本构关系模型,以及黏结应力分布位置函数,并建立了带缺陷灌浆套筒接头拉拔承载力的计算表达式,为装配式结构灌浆套筒接头的设计和施工提供技术支撑。The construction defects of grouting sleeve joints are inevitable in practical projects.In order to study the effect of construction defects on the pullout performance of grouting sleeve joints,the nonlinear finite element model of the pullout performance of the grouting sleeve joints with construction defects is established by using Abaqus software.On the basis of the existing test feasibility verification,simulation analysis is conducted on the pullout performance of the grouting sleeve joints with construction defects,which shows that the pullout bearing capacity of the grouting sleeve joints decreases greatly with the increase of the volume defect rate of the grouting material.Based on the results of finite element analysis,a bond-slip constitutive model of the interface between reinforcement and grouting material considering the effect of construction defects is proposed,as well as the position function of bond stress distribution,and the formula for calculating the pullout bearing capacity of grouting sleeve joints with construction defects is established,which provides technical support for the design and construction of grouting sleeve joints of prefabricated structures.
关 键 词:灌浆套筒连接 施工缺陷 黏结-滑移关系 有限元 拉拔承载力
分 类 号:TU758.14[建筑科学—建筑技术科学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.43