基于主成分分析的激光麦克风的语音信号提取  被引量:2

Voice signal extraction of laser microphone based on PCA

在线阅读下载全文

作  者:孙学明[1] 张大华[1] 周志全[1] 赵张美 胡荣磊[1] SUN Xue-ming;ZHANG Da-hua;ZHOU Zhi-quan;ZHAO Zhang-mei;HU Rong-lei(Beijing Electronic Science and Technology Institute,Beijing 100070,China)

机构地区:[1]北京电子科技学院,北京100070

出  处:《激光与红外》2022年第12期1761-1767,共7页Laser & Infrared

摘  要:主成分分析(Principal Component Analysis,PCA)法用于高速视觉的激光麦克风的音频信号重建,可从声场中轻质弹性物体表面的激光散斑动态变化中提取语音信息。将高速散斑视频中的一帧图像视为高维空间中的向量,顺序将视频图像堆栈成数据矩阵,利用PCA做特征提取,语音信息就存在于方差较大的主成分中,通常应用第一主成分就可以重建清晰的语音信号。实验表明,PCA对激光散斑颗粒尺度和灰度分布没有过多限制,即使在采样区域较小、反射物体材质不同的情况下,都可以重建人耳可分辨的语音信号。而且基于PCA的无监督机器学习算法特性,选取视频开始部分的帧图像做训练集,还可以提取含有音频信息的主成分的特征向量,作为后续视频图像向量的投影基,实现语音信号的快速提取。Principal component analysis(PCA)is used to reconstruct the audio signal of high-speed vision laser microphone,which can extract voice information from dynamic changes of laser speckle on the surface of light elastic objects in sound field.The speckle image in high-speed video is regarded as a vector in high-dimensional space,sequentially stacking video images into a data matrix,and the features are extracted by PCA.The speech information exists in the principal components with a large variance,and usually the clear speech signal can be reconstructed by first principal component.Experiments show that PCA does not have too many restrictions on the particle size and gray distribution of laser speckle,and can reconstruct speech signals distinguishable to human ears even with small sampling areas and different reflective object materials.Moreover,based on the characteristics of unsupervised machine learning algorithm of PCA,the eigenvectors containing audio information of the main components can also be extracted by using the initial frames of video as the training set,which can be used as the projection base of subsequent video image vectors to realize the rapid extraction of voice signals.

关 键 词:激光麦克风 激光散斑 语音提取 主成分分析 机器学习 

分 类 号:TN247[电子电信—物理电子学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象