衰减信道下具有严格时延的P2P实时通信传输策略  被引量:6

Scheduling Policy of P2P Real-time Communication with Strict Delay in Fading Channel

在线阅读下载全文

作  者:田世坤 唐胜达 TIAN Shikun;TANG Shengda(School of Mathematics and Statistics,Guangxi Normal University,Guilin Guangxi 541006,China)

机构地区:[1]广西师范大学数学与统计学院,广西桂林541006

出  处:《广西师范大学学报(自然科学版)》2022年第6期122-130,共9页Journal of Guangxi Normal University:Natural Science Edition

基  金:国家自然科学基金(61761008);广西自然科学基金(2018JJA170024);广西研究生教育创新计划项目(YJSCXP202105)。

摘  要:本文考虑衰减信道下点对点(P2P)的实时通信问题,具体地,设大小已知的传输任务随机到达系统,每个传输任务具有严格时延,考虑系统在随机衰减信道下的实时最优传输策略,使系统贴现总期望收益达到最大。将通信模型转换成Markov决策过程(MDP),考虑到基于MDP架构下的维数灾难,基于无休止赌博机模型(RBP)分析P2P实时传输问题,证明衰减信道下P2P实时通信系统的可索引性,同时给出传输策略的Whittle索引封闭解。本文理论上保证衰减信道下P2P实时传输策略Whittle索引的存在性,并可由Whittle索引封闭解设计低时间复杂度的传输调度算法,对衰减信道下P2P实时通信的设计与优化具有指导意义。In this paper,a real-time communication problem of point-to-point(P2P)under fading channels is discussed.Specifically,assuming that transmission tasks with a known size arrive at the system randomly,and each transmission task has a strict time delay,the system’s real-time optimal transmission strategy under a random attenuation channel is studied,so as to maximize the total expected benefit of the system discount.Firstly,the communication model is transformed into Markov decision process(MDP).Considering the dimensionality disaster based on MDP architecture,this paper analyzes the P2P real-time transmission problem based on the restless bandit process model(RBP),and proves that the indexability of P2P real-time transmission under the fading channel.Then the Whittle index closed solution of the transmission strategy is given.The conclusion of this paper theoretically ensures the existence of the Whittle index of P2P real-time transmission strategyunder the fading channel,and the closed solution of the Whittle index can be used to design a transmission scheduling algorithm with low time complexity.This is of guiding significance for the design and optimization of P2P real-time communication under fading channel.

关 键 词:点对点通信 传输策略 无休止赌博机模型 Whittle索引 

分 类 号:O211.9[理学—概率论与数理统计]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象