检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:高丽君 张宇涛 林昀萱 施慧玲 GAO Li-jun;ZHANG Yu-tao;LIN Yun-xuan;SHI Hui-ling(College of Economics and Management,Fuzhou University,Fuzhou 350108 China;College of Mathematics and Statistics,Fuzhou University,Fuzhou 350108 China;Maynooth International Engineering College,Fuzhou University,Fuzhou 350108 China)
机构地区:[1]福州大学经济与管理学院,福建福州350108 [2]福州大学数学与计算机科学学院,福建福州350108 [3]福州大学梅努斯国际工程学院,福建福州350108
出 处:《科技创新与生产力》2022年第12期65-70,共6页Sci-tech Innovation and Productivity
基 金:福州大学国家级大学生创新创业训练计划项目(202110386018)。
摘 要:酒店顾客满意度作为一项重要指标,是顾客决策与酒店管理行为的重要依据。本文对酒店预订平台的在线评论进行情感分析获取顾客满意度,分别采用Word2vec,GloVe,fastText,BERT预训练词向量作为模型词嵌入层,并与CNN,LSTM等模型进行对比分析得出最优模型。本文选取携程网站上福州市内多家知名酒店的在线评论实例论证,实验结果显示:BERT-BiLSTM模型准确率达85.8%。本文探究了各酒店的顾客满意度水平,为顾客选择酒店的决策行为以及福州市内知名酒店的发展提供参考依据。As an important indicator,hotel customer satisfaction is an important basis for customer decision-making and hotel management behavior.This paper conducts emotional analysis on online reviews of hotel reservation platform to obtain customer satisfaction.Word2vec,GloVe,fastText,BERT pre-training word vectors are respectively used as the model word embedding layer,and compared with CNN,LSTM and other models to obtain the optimal model.This paper selects online reviews of many well-known hotels in Fuzhou on Ctrip’s website to demonstrate.The experimental results show that the BERT-Bi LSTM model has an accuracy rate of 85.8%.This paper explores the level of customer satisfaction in each hotel,providing a reference for customers’decision-making behavior in choosing hotels and the development of well-known hotels in Fuzhou.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.143.213.242