检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:崔昊杨 周坤 胡丰晔 张宇 夏晟 Cui Haoyang;Zhou Kun;Hu Fengye;Zhang Yu;Xia Sheng(Shanghai University of Electric Power,Shanghai 200090,China)
机构地区:[1]上海电力大学,上海200090
出 处:《电测与仪表》2023年第1期10-15,共6页Electrical Measurement & Instrumentation
基 金:国家自然科学基金资助项目(61107081);上海市地方院校能力建设项目(15110500900)。
摘 要:针对电力大数据存在数据随机缺失进而降低长短期记忆模型(Long Short-term Memory,LSTM)预测准确率的问题,文中提出了一种基于改进LSTM的电力设备状态融合预测模型。该模型先对状态数据进行缺值检测和平稳分析,根据历史数据利用差分整合移动平均自回归模型(Autoregressive Integrated Moving Average Model,ARIMA)对缺失的数值进行预测,并将预测的数值补充至相应的缺失位置;将新的完整数据输入到ARIAM模型和改进LSTM模型中以获取两种预测值;根据改进LSTM模型的学习准确率和ARIAM模型的拟合度对预测值进行权重分配,并在此基础上进行状态趋势融合预测。为了验证文中模型的普适性和预估准确性,选择电力负荷数据开展实验,结果表明:基于改进LSTM的电力设备状态融合预测模型在数据完整情况下的预测准确率比ARIAM和LSTM分别提高了52%和25%,在数据缺失情况下的预测准确率分别提高了44%和57%。Aiming at the problem that power big data has random missing data and reduces the prediction accuracy of long short-term memory(LSTM),an improved fusion prediction model for power equipment based on improved LSTM is proposed in this paper.The model firstly performs missing value detection and stable analysis on the state data,and adopts the differential integrated moving average autoregressive model(ARIMA)to predict the missing values based on historical data,and supplements the predicted values to the corresponding missing position;and then,the new complete data is input into the ARIAM model and the improved LSTM model to obtain two kinds of prediction values;finally,the weights are assigned to the prediction values according to the learning accuracy of the improved LSTM model and the fitting degree of the ARIAM model,and on this basis,state trend fusion prediction is performed.In order to verify the universality and prediction accuracy of the model in this paper,the power load data was selected to carry out experiments.The results show that the prediction accuracy of the power equipment state fusion prediction model based on the improved LSTM under the condition of complete data is higher 52% and 25% than that of ARIAM and LSTM respectively,and the prediction accuracy in the absence of data has been improved by 44% and 57% respectively.
关 键 词:数据随机缺失 改进LSTM模型 状态趋势融合预测
分 类 号:TM71[电气工程—电力系统及自动化]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15