与MEMS相结合的车联网激光动态测距  

Laser Dynamic Ranging for Internet of Vehicles Combined with MEMS

在线阅读下载全文

作  者:王静 李鹏伟 Wang Jing;Li Pengwei(School of Electronic Information Engineering,Xi'an Vocational University of Automobile,Xi'an 710600,China)

机构地区:[1]西安汽车职业大学电子信息工程学院,西安710600

出  处:《单片机与嵌入式系统应用》2023年第1期80-83,共4页Microcontrollers & Embedded Systems

摘  要:提出一种脉冲激光测距与MEMS传感器相结合提高车联网混合动力汽车激光测距精度的方法。该方法可减小因混合动力汽车MEMS加速度脉冲上升沿延时带来的干扰误差,减小因脉冲式激光测距系统回波信号幅值变化波动引起的信息传输噪声误差。此外,还提出一种脉冲激光测距与MEMS传感器寄存器配置理论代码,该脉冲激光测距方法能够避免因电子元器件整体负载承受能力有限而带来的固有“动态多阈值”误差,相较已有的“相位型”激光测距减小延时误差的方法,具有精度高、成本低、性能稳定、环保安全等优点。经车联网数据采样试验验证,该激光测距精度高达0.798°,干扰误差仅±0.001,回波信号幅值误差仅15 cm左右,可实现快速、高精度、大范围的“动态”与“静态”激光测距。In the paper,a method is proposed,which can improve the accuracy of laser ranging for hybrid electric vehicles in the internet of vehicles by combining pulse laser ranging with MEMS sensors.This method can reduce the interference error caused by the rising edge delay of MEMS acceleration pulse of hybrid electric vehicle and the information transmission noise error caused by the amplitude fluctuation of echo signal of pulse laser ranging system.In addition,a theoretical code of pulse laser ranging and MEMS sensor register configuration is proposed.The pulse laser ranging method can avoid the inherent"dynamic multi threshold"error caused by the limited load bearing capacity of electronic components.Compared with the existing"phase type"laser ranging method,it has the advantages of high accuracy,low cost,stable performance,environmental protection and safety.Through the verification of the data sampling test of the internet of vehicles,the laser ranging accuracy is as high as 0.798°,the interference error is only±0.001,and the echo signal amplitude error is only about 15 cm.Therefore,it can realize fast,high-precision and wide range"dynamic"and"static"laser ranging.

关 键 词:车联网 脉冲激光 MEMS测距 加速度光学传感器 

分 类 号:U462[机械工程—车辆工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象