基于改进贝叶斯的重型数控机床可靠性研究  被引量:4

Reliability Research of Heavy CNC Machine Tools Based on Improved Bayesian

在线阅读下载全文

作  者:陈红霞[1,2] 张俊峰 马爱博 李宏悦 李晨光 CHEN Hongxia;ZHANG Junfeng;MA Aibo;LI Hongyue;LI Chenguang(College of Mechanical Engineering,Inner Mongolia University of Technology,Huhhot 010051;Key Laboratory of Advanced Manufacturing Technology of Inner Mongolia Autonomous Region,Huhhot 010051)

机构地区:[1]内蒙古工业大学机械工程学院,呼和浩特010051 [2]内蒙古自治区先进制造技术重点实验室,呼和浩特010051

出  处:《电子科技大学学报》2023年第1期140-145,共6页Journal of University of Electronic Science and Technology of China

基  金:国家自然科学基金(51965051)。

摘  要:重型数控机床在机械加工领域占据重要地位,因此提高其可靠性以及加工精度,对我国工业发展有重要意义。重型数控机床具有结构复杂、故障溯源困难、样本少、数据不足等缺点,因此对其进行可靠性研究比较困难。针对这一问题,采用双参数的威布尔分布建立机床的可靠性模型,引入贝叶斯理论对其进行参数估计,并通过马尔科夫链蒙特卡洛方法(MCMC)计算参数估计结果。对贝叶斯参数估计法中的待估参数进一步分析,得到多层次的贝叶斯模型,并通过参数仿真实验分析其准确性。采用标准均方根误差值及置信区间宽度进行模型优劣的对比,结果表明,改进后的贝叶斯方法参数估计结果精度更优,更有利于建立机床可靠性模型。Heavy-duty CNC machine tools occupy an important position in the field of machining,and improving its reliability and machining accuracy is of great significance to the industrial development of China.Compared with conventional machine tools,heavy-duty CNC machine tools have the characteristics of complex structure,difficulty in fault tracing,few samples,and insufficient data,which make it difficult to conduct reliability research on them.Aiming at this problem,this paper uses the Weibull distribution of two parameters to establish the reliability model of the machine tool,introduces Bayesian theory to estimate its parameters,and calculates the parameter estimation results through the Markov Chain Monte Carlo method(MCMC).In order to improve the accuracy of parameter estimation,the traditional Bayesian method is improved,and the standard root mean square error value and confidence interval are used for evaluation and comparison.The results show that the improved Bayesian method has better parameter estimation accuracy and is more conducive to the establishment of machine tool reliability models.

关 键 词:贝叶斯参数估计 重型数控机床 MCMC 极大似然估计法 

分 类 号:TB114.3[理学—概率论与数理统计] TG659[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象