检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Nithin Sudarsanan Youngsoo Richard Kim
出 处:《Journal of Traffic and Transportation Engineering(English Edition)》2022年第5期808-835,共28页交通运输工程学报(英文版)
摘 要:New pavement construction techniques and the increased use of recycled materials have led to unexpected and premature pavement failure in recent years.The pavement’s exposure to daily and seasonal extreme temperature and repeated vehicular loads accumulate damage.Pavement cracking occurs once the cumulative damage surpasses the material’s cracking threshold.Fatigue crack is the most common pavement cracking type.Over the past four decades,researchers have carried out numerous experiments and analyses to understand pavement cracking.This paper aims to provide an overview of fatigue cracking and discuss various fatigue test methods for characterizing asphalt concrete mixtures.The article also discusses the most common phenomenological and mechanistic models for predicting the fatigue life of asphalt concrete pavements based on different fatigue test results.The paper details the implementation of the commonly used numerical models found in numerical simulation software and their prediction ability for the fatigue life of a pavement structure.Two major flaws in current evaluation methods are the sensitivity of experimental results and the lack of reliability of some predictive models.Multiscale asphalt material characterization is the ongoing practice for determining the most appropriate performance evaluation tool.However,proceeding with future research objectives is unrealistic until the accuracy of the tests and reliability of the predictions can be verified against actual field results.This critical review of the fatigue life predictions of asphalt mixtures and pavements should help to refine or redefine the right course of action for future research.
关 键 词:Fatigue cracking Failure criteria Fracture mechanics Simplified viscoelastic continuum damage(S-VECD)model Mechanistic-Empirical Pavement Design Guideline(MEPDG)
分 类 号:U414[交通运输工程—道路与铁道工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.74