基于指数机制的轨迹差分隐私保护方法  被引量:2

Trajectory differential privacy protection method based on exponential mechanism

在线阅读下载全文

作  者:焦荟聪 刘文菊[1] 王赜[1] JIAO Huicong;LIU Wenju;WANG Ze(College of Computer Science and Technology,Tiangong University,Tianjin 300384,China)

机构地区:[1]天津工业大学计算机科学与技术学院,天津300384

出  处:《大数据》2023年第1期141-152,共12页Big Data Research

摘  要:针对传统轨迹数据保护中忽略位置点携带的语义信息带来的隐私泄露问题,提出一种基于指数机制的轨迹差分隐私保护方法。针对位置空间属性及位置语义特征双重属性信息导致的隐私泄露,根据差分隐私中指数机制的特性,为位置点设计可用的打分函数后随机化输出,对轨迹进行了有效的隐私保护。该方法在保证位置隐私的同时减小数据集规模,并防止语义背景推断攻击,提高数据可用性。在真实轨迹数据集上进行实验,实验结果表明,该方法可以保证隐私强度,有效保护了用户的停留区域位置隐私,同时有效提高了数据可用性。A trajectory differential privacy protection method based on exponential mechanism was proposed,aiming at the problem of privacy disclosure caused by ignoring semantic information carried by location points in traditional trajectory data protection.For the privacy disclosure caused by the dual attribute information of geographic features and semantic features of location,an available scoring function for location points was designed according to the characteristics of the index mechanism in differential privacy.And the function randomized the output to protect the trajectory effectively privacy.This scheme could reduce the size of data sets while ensure location privacy,prevent semantic background inference attacks and improve data availability.Experiments were carried out on real trajectory data sets,and the experimental results showed that the proposed method not only effectively protected the privacy of the user's stay area location,but also effectively improved the data availability while ensured the privacy intensity.

关 键 词:差分隐私 时空轨迹 语义位置 指数机制 

分 类 号:TP391[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象