热工过程海量数据的高质量样本提取方法及应用  

High-quality Sample Selection Method for Mass Operating Data of Thermal Process and Corresponding Application

在线阅读下载全文

作  者:何康 汪勇 陈荣泽 任少君[1] 司风琪[1] He Kang;Wang Yong;Chen Rongze;Ren Shaojun;Si Fengqi(School of Energy and Environment,Southeast University,Nanjing 210096,China;Shanghai Power Equipment Research Institute Co.Ltd.,Shanghai 200240,China)

机构地区:[1]东南大学能源与环境学院,南京210096 [2]上海发电设备成套设计研究院有限责任公司,上海200240

出  处:《发电设备》2023年第1期59-64,共6页Power Equipment

基  金:国家自然科学基金资助项目(51976031);国家电力投资集团有限公司统筹研发经费支持项目(TC2019HD10);上海发电设备成套设计研究院有限责任公司科技发展基金(201909009C)。

摘  要:提出了一种面向热工过程海量运行数据的高质量样本提取方法,通过主成分分析(PCA)提取系统隐变量,采用基于稳态权重的合成少数类过采样(SWSMOTE)来补充少数类工况样本。以燃气轮机为工程算例,验证所提算法的有效性。结果表明:提出的高质量样本提取方法可将原始数据数量压缩到10%左右,模型平均均方根误差从0.042下降至0.031,模型训练时间减少90%。A method of high-quality sample selection was proposed for mass operating data of thermal processes. The latent variables of the system were selected through principal component analysis(PCA), and the samples were supplied by the steady weights synthetic minority over sampling technique(SWSMOTE) for the operating condition with fewer samples. After which, taking a gas turbine as an engineering example, the availability of the proposed method was verified. Results show that, the original data can be compressed to about 10% by the proposed method for high-quality sample selection, and the average root mean square error of the model can be reduced from 0.042 to 0.031. The training time of the model can be reduced by 90%.

关 键 词:热工过程 样本提取 数据约简 

分 类 号:TM621[电气工程—电力系统及自动化] TB114.[理学—概率论与数理统计]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象