检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:冯宇平[1] 逄腾飞 管玉宇 刘宁 赵德钊 Feng Yuping;Pang Tengfei;Guan Yuyu;Liu Ning;Zhao Dezhao(College of Automation and Electronic Engineering,Qingdao University of Science and Technology,Qingdao 266061,Shandong,China)
机构地区:[1]青岛科技大学自动化与电子工程学院,山东青岛266061
出 处:《计算机应用与软件》2022年第12期174-179,218,共7页Computer Applications and Software
基 金:国家自然科学基金项目(61971253);青岛科技大学大学生创新创业训练计划项目(S201910426025)。
摘 要:为了提高训练速度和浅层卷积神经网络下的人脸表情识别效果,提出一种基于LBP特征和权重最优下的卷积神经网络(CNN)人脸表情识别方法。通过对原始样本数据集进行预处理,并将处理好的数据集利用局部二值模式(LBP)获取局部纹理特征;将得到的LBP特征的样本数据集进行多次随机打乱,加入到自己创建的浅层CNN中,利用随机梯度下降算法(SGD)对每次打乱的样本数据集进行训练及验证,并保存最优权重下的CNN模型;用测试集对CNN模型在CK+数据集和FER2013数据集上进行10倍交叉验证并分别取得了97.2%和71.4%的识别率。实验结果表明,该方法不仅使网络训练迭代的速度变快,而且能有效增强人脸表情识别的效果,具有较强的鲁棒性。In order to improve the training speed and the facial expression recognition effect under shallow convolutional neural network, this paper proposes a convolutional neural network(CNN) facial expression recognition method based on LBP features and optimal weight. The original sample dataset was preprocessed and the processed dataset was operated by local binary patterns(LBP) to obtain local texture features. The sample dataset with LBP features obtained was randomly scrambled several times and added to the shallow CNN created by ourselves. The stochastic gradient descent(SGD) algorithm was used to train and verify the sample dataset each time after it was scrambled, and the CNN model with the optimal weight was saved. The CNN model was 10-fold cross-validated on CK+ dataset and FER2013 dataset, and the recognition rates were 97.2% and 71.4% respectively. The experimental results show that this method not only make the speed of network training iteration faster, but also effectively enhance the facial expression recognition effect and has strong robustness.
分 类 号:TP391.4[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.14.67.90