检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:毛晓娟 鲍彤 荀广连[1] 李德翠[1] 王宝佳 任妮[1] Mao Xiaojuan;Bao Tong;Xun Guanglian;Li Decui;Wang Baojia;Ren Ni(Information Center of Jiangsu Academy of Agricultural Sciences,Nanjing,210014,China)
机构地区:[1]江苏省农业科学院信息中心,南京市210014
出 处:《中国农机化学报》2023年第1期116-123,共8页Journal of Chinese Agricultural Mechanization
基 金:江苏省重点研发计划(现代农业)项目(BE2021379)。
摘 要:温度是设施生产中作物生长的主要制约因素之一,提前预测温室温度对精准调控温室环境具有重要的指导意义。因此提出一种基于灰狼优化算法的长短期记忆网络模型预测温室温度,该模型利用灰狼优化算法(Grey Wolf Optimizer,GWO)对长短期记忆网络(Long Short-Term Memory,LSTM)模型参数进行调整优化。以江苏省农业科学院阳光板温室2020年9月23日—12月21日期间的试验数据对该方法进行验证。结果显示:在预测时间步长30 min时,GWO-LSTM的预测均方根误差、平均绝对误差、平均绝对百分比误差和决定系数分别为0.6776、0.4114、0.1687和0.9604。在预测时间步长60 min内,GWO-LSTM模型预测精度均高于标准LSTM和反向传播人工神经网络(Back Propagation Artificial Neural Network,BP-ANN)。说明所提出的GWO-LSTM模型能够准确地预测未来温室内温度变化,可为制定温室环境智能调控策略提供有效的数据支撑。Temperature is one of the main limiting factors of crop growth in facility production.It is of great guiding significance to predict air temperature in the greenhouse in advance for managing and controlling the environment in the greenhouse accurately.Long Short-Term Memory network(LSTM)based on Grey Wolf Optimization(GWO)model was proposed to predict air temperature in the greenhouse in this paper.This model used GWO to adjust and optimize the parameters of LSTM,which could avoid manual adjustment of parameters and improve the efficiency of model parameter adjustment.The experimental greenhouse was located in Jiangsu Academy of Agricultural Sciences.The data of environment and control device operation status were collected from September 23rd,2020 to December 21st,2020 during the experiment.The results showed that when the predicted time step was 30 min,the root mean square error,mean absolute error,mean absolute percentage error and determination coefficient of GMO-LSTM prediction were 0.6776、0.4114、0.1687 and 0.9604,respectively.In the prediction time step of 60 min,the prediction accuracy of GMO-LSTM was higher than that of standard LSTM and Back Propagation Artificial Neural Network(BP-ANN).In summary,GWO-LSTM model proposed in this paper could accurately predict the future temperature change in the greenhouse,which could also provide the effective data support for developing intelligent control strategy of the environment in the greenhouse.
关 键 词:温室 温度 时间序列 长短期记忆网络 灰狼优化算法
分 类 号:S625.5[农业科学—园艺学] TP301.6[自动化与计算机技术—计算机系统结构]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.145