全血细胞衍生的炎症标志物对急性心力衰竭患者的长期预后价值  被引量:15

Long-term prognostic value of whole blood cell-derived inflammatory markers in patients with acute heart failure

在线阅读下载全文

作  者:高蓉蓉[1] 徐芳[1] 祝绪 唐愿 岳鑫 陆心怡 渠强 廖深根 周艳丽[1] 张海锋[1] 姚文明[1] 李新立[1] GAO Rongrong;XU Fang;ZHU Xu;TANG Yuan;YUE Xin;LU Xinyi;QU Qiang;LIAO Shengen;ZHOU Yanli;ZHANG Haifeng;YAO Wenming;LI Xinli(Department of Cardiology,The First Affiliated Hospital of Nanjing Medical University,Nanjing,210029,China)

机构地区:[1]南京医科大学第一附属医院心内科,南京210029

出  处:《临床心血管病杂志》2022年第12期980-987,共8页Journal of Clinical Cardiology

摘  要:目的本研究旨在评估全血细胞衍生的炎症标志物[包括中性粒细胞与淋巴细胞比值(NLR)、血小板与淋巴细胞比值(PLR)、单核细胞与淋巴细胞比值(MLR)、全身免疫炎症指数(SII)和全身炎症反应指数(SIRI)]与急性心力衰竭(AHF)患者全因死亡的关系。方法本研究是一项前瞻性队列研究,2012年4月—2016年5月连续入组538例AHF患者,并随访至2019年3月。通过ROC曲线确定炎症标志物预测AHF患者全因死亡的最佳临界值并进行分组。使用Kaplan-Meier法绘制生存曲线,log-rank检验比较组间生存有无差异。多因素Cox回归评估炎症标志物与AHF全因死亡的关系。AUC、综合判别改进指数和连续净重分类改进指数评估炎症生物标志对AHF患者的基础预测模型改善情况。限制性立方样条回归和分段线性回归探究全血细胞衍生的炎症标志物与AHF全因死亡的阈值效应。最后,采用随机生存森林模型估计衍生的炎症标志物在AHF全因死亡风险中的相对重要性。结果中位随访34个月,全因死亡227例(42.2%)。多变量逐步回归显示,年龄、性别、平均动脉压、尿素氮、和N-末端脑钠肽前体(NT-proBNP)是AHF患者全因死亡的独立危险因素。校正上述变量后,NLR(P=0.011)、MLR(P=0.015)、SII(P=0.026)和SIRI(P=0.017)与AHF患者全因死亡风险独立相关,其中NLR和MLR可显著改变模型对AHF全因死亡的预测能力。样条回归结果显示,NLR、MLR、SII、SIRI与AHF全因死亡风险呈线性关系,血小板(PLT)和PLR与AHF预后呈非线性关系,其阈值拐点分别为159.676×109/L和111.585。随机生存森林模型表明,NLR是5种全血细胞衍生的炎症标志物中最重要的预测因子。结论炎症生物标志物与AHF患者全因死亡风险有关,其中NLR是衍生炎症标志物中最重要的预测因子,可显著改善模型的预测能力,而PLR与AHF全因死亡风险存在非线性“U”型关系。Objective Systemic inflammation is associated with poor prognosis in acute heart failure(AHF).This study was to evaluate the association of whole blood cell-derived inflammatory markers[including neutrophil-to-lymphocyte ratio(NLR),platelet-to-lymphocyte ratio(PLR),monocyte-to-lymphocyte ratio(MLR),systemic immune-inflammation index(SII),and systemic inflammation response index(SIRI)]with all-cause mortality in patients with AHF.Methods This study was a prospective cohort study with 538 consecutive patients with AHF enrolled from April 2012 to May 2016,and followed up until March 2019.The optimal threshold of inflammatory markers to predict all-cause mortality in AHF patients was determined by ROC curves and the participants were then divided into separate groups based on this threshold.Survival curves were plotted using the Kaplan-Meier method,and log-rank tests were performed to compare any differences in all-cause mortality between inflammatory marker groups.Multifactorial Cox regression was performed to assess the association between inflammatory markers and all-cause mortality in AHF.We usedtheAUC,integrated discrimination improvement(IDI),and continuous net reclassification improvement(c-NRI)to assess the improvement of the underlying predictive model of inflammatory biomarkers in AHF patients.Restricted cubic spline regression and segmented linear regression were used to explore the threshold effects of inflammatory markers and all-cause mortality in AHF.Finally,a randomized survival forest model was used to estimate the relative importance of each inflammatory marker in the risk of all-cause mortality in AHF.Results At a median follow-up of 34 months,there were 227 all-cause deaths(42.2%).Multivariate stepwise regression showed that age(P<0.001),gender(P=0.003),mean arterial pressure(P<0.001),urea nitrogen(P=0.005),and NT-proBNP(P<0.001)were independent risk factors for all-cause mortality in patients with AHF.After adjustment for the above variables,NLR(P=0.011),MLR(P=0.015),SII(P=0.026),and SIRI(P=0.017

关 键 词:急性心力衰竭 炎症生物标志物 全因死亡 

分 类 号:R541.6[医药卫生—心血管疾病]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象