检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:黄志静 邵慕义 张庭瑞 沈嘉轶 Huang Zhijing;Shao Muyi;Zhang Tingrui;Shen Jiayi(Computer School,Beijing Information Science and Technology University,Beijing,100101)
机构地区:[1]北京信息科技大学计算机学院,北京100101
出 处:《电子测试》2022年第22期69-71,10,共4页Electronic Test
基 金:北京信息科技大学大学生创新创业训练计划项目-计算机学院(5112210832)支持。
摘 要:为了更好地保护野生动物以及动物基因库的种类,保障生物链的完整性。运用深度学习技术对野生动物的图像进行识别,并且为了降低噪声信息的干扰及提高野生动物图像识别的准确率,提出了基于深度残差收缩网络的野生动物识别模型。目的是可以更好地帮助社会对野生动物进行监管和保护。该模型在深度残差网络的基础上融入注意力机制和软阈值函数,从而降低噪声信息的干扰,提高图像识别的准确率。将深度残差收缩网络与深度残差网络模型对相同野生动物数据集进行训练作对比,同时对部分野生动物图像进行了测试。实验结果表明,深度残差收缩网络提高野生动物图像识别准确率。In order to better protect wild animals and the types of animal gene banks, the integrity of the biological chain is guaranteed. Deep learning technology is used to identify wild animal images,and in order to reduce the interference of noise information and improve the accuracy of wildlife image recognition, a wildlife recognition model based on deep residual shrinkage network is proposed. The aim is to better help society regulate and protect wildlife. Based on the deep residual network, the model incorporates the attention mechanism and soft threshold function, so as to reduce the interference of noise information and improve the accuracy of image recognition. The deep residual shrinkage network and the deep residual network model were trained on the same wildlife dataset, and some wildlife images were tested. Experimental results show that the deep residual shrinkage network improves the accuracy of wildlife image recognition.
分 类 号:TP183[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.177