检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:谢柏林 黎琦 魏娜 邝建 XIE Bailin;LI Qi;WEI Na;KUANG Jian(School of Information Science and Technology,Guangdong University of Foreign Studies,Guangzhou 510006,China)
机构地区:[1]广东外语外贸大学信息科学与技术学院,广州510006
出 处:《计算机工程》2023年第1期279-286,294,共9页Computer Engineering
基 金:广东省基础与应用基础研究基金(2018A0303130045);广州市科技计划项目(201904010334)。
摘 要:社交网络已成为人们获取和发布信息的一个重要平台,也是黑客发起网络诈骗的主要场地。大多数黑客在发起网络诈骗之前,首先会判别目标用户的主要人格特点,然后根据主要人格特点制定与其接触的策略。因此,面向社交网络用户的人格特质识别方法的研究对提高用户识别社交网络诈骗能力具有重要意义。提出基于用户的人格特质识别方法。通过构建面向社交网络的人格特质词典提取用户发表或转发文本信息中能反映用户主要人格特质类型的观测值,采用5个具有不同参数值的隐半马尔可夫模型刻画用户在社交网络上发表或转发文本信息的行为过程。在人格特质识别阶段,通过计算每个用户在发表或转发文本信息过程中产生的观测序列相对于模型的平均对数似然概率,以识别用户所属的人格特质类型。在采集的新浪微博数据集上进行实验,结果表明,当假正率为10%时,该方法的总真正率为93.18%,能准确识别用户的人格特质类型。Social networks have become an important platform for people to obtain and release information,and are also the preferred sites for hackers to launch an online fraudulent scheme.Before starting such a scheme,most hackers will first identify the main personality characteristics of the target users and then formulate contact strategies on the basis of these characteristics.Therefore,studies on personality trait identification methods for social network users are of great significance to improve users’ability to identify fraudulent schemes on social network.In this paper,a user-based personality trait recognition method is proposed.By constructing a personality trait dictionary for social networks,the proposed method can extract the observation values that can reflect the main personality trait types of users based on the text information they have published or forwarded.Moreover,the method uses five Hidden semi-Markov Models(HsMM)with different parameter values to describe the behavior process of users when publishing or forwarding text information on social networks.In the personality trait recognition stage,the average log likelihood probability of the observation sequence generated by each user while publishing or forwarding text information relative to the model is calculated to identify the type of personality trait the user has.The experimental results on the collected Sina Weibo dataset show that,when the false positive rate is 10%,the total true positive rate of the proposed method is 93.18%,which indicates that it can accurately identify the user’s personality traits.
关 键 词:社交网络 人格特质 隐半马尔可夫模型 用户行为 网络诈骗
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.49