检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:彭雅琪 吴国昊 PENG Yaqi;WU Guohao(Zhejiang Institute of Surveying and Mapping Science and Technology,Hangzhou,Zhejiang 310030,China)
机构地区:[1]浙江省测绘科学技术研究院,浙江杭州310030
出 处:《测绘标准化》2022年第4期36-40,共5页Standardization of Surveying and Mapping
摘 要:为了能从高分辨率遥感影像数据中有效提取道路中心线,满足地理信息库建设等方面的数据需求,本文提出了基于高分辨率遥感影像数据的多特征融合道路中心线提取算法。首先,基于影像分割提取道路的空间特征与光谱特征;其次,通过多特征融合算法融合空间特征与光谱特征,通过对面向对象角度构建的形状特征进行网络优化,获取精细化道路网络;最后,引入计算机视觉中的张量投票算法准确提取道路中心线。将本文算法与已有道路网络提取算法进行对比,结果表明,本文算法提取结果在检测质量、正确率和完整率3个评价指标方面均优于已有算法,验证了其有效性与优越性。In order to effectively extract road centerline from high-resolution remote sensing image data and meet the data requirements of geographic information database construction, this paper proposes a multi-feature fusion road centerline extraction algorithm based on high-resolution remote sensing image data. Firstly, spatial features and spectral features of roads are extracted based on image segmentation;Secondly, spatial features and spectral features are fused by multi-feature fusion algorithm, and refined road network is obtained through network optimization based on shape features constructed from the perspective of object-oriented;Finally, the tensor voting algorithm in computer vision is introduced to accurately extract the road centerline. The proposed algorithm is tested and compored with the existing road network extraction algorithms, the experimental results show that the extraction results of the algorithm in this paper are better than the existing algorithms in terms of detection quality, accuracy rate, and integrity rate, which verifies its effectiveness and superiority.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.15.221.165