基于POI数据的城市中心区步行网络规划方法研究——以南京新街口地区为例  

Research on Pedestrian Network Planning Method of Urban Central Area based on POI Data——A Case Study of Xinjiekou District,Nanjing

在线阅读下载全文

作  者:费跃 温旭丽[1] 刘云[1] 毛盈盈 FEI Yue;WEN Xuli;LIU Yun;MAO Yingying(School of Civil and Traffic Engineering,Chengxian College,Southeast University,Nanjing 210088,China)

机构地区:[1]东南大学成贤学院土木与交通工程学院,南京210088

出  处:《交通工程》2022年第6期73-77,84,共6页Journal of Transportation Engineering

基  金:2021年度东南大学成贤学院青年教师科研发展基金项目,项目名称《基于POI数据的步行路网规划方法研究——以南京主城为例》项目编号:z0030。

摘  要:为了解决城市步行网络规划缺少定量数据支撑的问题,提出利用兴趣点(Point of Interest,POI)数据计算路段潜在步行需求强度,进行步行网络规划.以南京新街口地区为例,从开放地图平台获取POI数据和路网数据,采用Floyd最短路算法筛选潜在步行出行起讫点对和出行路径,计算路段潜在步行需求强度,进行步行网络等级划分,并提出步行空间改善对策建议和步行环境提升设计指引.与传统规划方法相比,论文方法将步行需求细化到了具体路段,在步行路网分级依据上更明确,并能充分考虑到支路和街巷的步行需求.研究结果对城市步行网络规划具有一定的指导意义.In order to solve the problem of lack of quantitative data support in urban pedestrian network planning,this paper proposes to use the Point of Interest(POI)data to calculate the potential walking demand intensity of road sections for pedestrian network planning.Taking the Xinjiekou District of Nanjing as an example,the POI data and road network data are obtained from the open map platform,and the Floyd shortest path algorithm is adopted to screen the potential walking trip origin-destination pairs and travel routes,then the intensity of potential walking demand on road sections is calculated,and the walking network is classified.Suggestions for improving walking space and guidelines for improving walking environment are put forward.Compared with the traditional planning method,the walking demand is refined to specific sections,which is more clear in the classification basis of the walking network,and can fully consider the walking demand of branch roads and streets.The research results have certain guiding significance for urban pedestrian network planning.

关 键 词:步行网络 POI数据 步行权重 潜在步行需求强度 步行空间改善 

分 类 号:U121[交通运输工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象