基于量子微粒群优化算法的半透明介质光学参数反演  被引量:2

Inversion of Optical Parameters of Semitransparent Media Based on Quantum Particle Swarm Optimization Algorithm

在线阅读下载全文

作  者:魏琳扬 郭馨 王存海 李国军 WEI Lin-yang;GUO Xin;WANG Cun-hai;LI Guo-jun(School of Metallurgy,Northeastern University,Shenyang 110819,China;Harbin Boiler Company Limited,Harbin 150046,China;School of Energy and Environmental Engineering,University of Science and Technology Beijing,Beijing 100083,China)

机构地区:[1]东北大学冶金学院,辽宁沈阳110819 [2]哈尔滨锅炉厂有限责任公司,黑龙江哈尔滨150046 [3]北京科技大学能源与环境工程学院,北京100083

出  处:《东北大学学报(自然科学版)》2023年第1期63-68,75,共7页Journal of Northeastern University(Natural Science)

基  金:国家自然科学基金资助项目(52106079);中国博士后科学基金资助项目(2020M680968).

摘  要:针对半透明介质光学参数估计问题,建立了脉冲激光辐照下半透明介质光学参数反演模型,采用量子微粒群优化(QPSO)算法反演了折射率和吸收系数,分析了测量误差、热物性参数对反演结果的影响,并利用敏感性分析揭示了反演精度与测量误差的关系.计算结果表明:建立的反演模型和采用的QPSO算法可以精确估计折射率和吸收系数,即使人为添加10%的测量误差,反演结果依然具有较强的鲁棒性和准确度.本研究可为半透明介质物性参数获取提供技术参考.Aiming at the problem of optical parameter estimation for semitransparent media,an inversion model for optical parameters of semitransparent media exposed to pulse laser irradiation is established.The quantum particle swarm optimization(QPSO)algorithm is adopted to estimate the refractive index and absorption coefficient.The effects of measurement error and thermophysical parameters on the inversion results are analyzed.The relationship between the inversion accuracy and measurement error is revealed by sensitivity analysis.The calculation results show that the established inversion model and the QPSO algorithm can accurately estimate the refractive index and absorption coefficient.Even with measurement error of 10%,the retrieval results still have strong robustness and high accuracy.This study can provide technical reference for obtaining the physical parameters of semitransparent media.

关 键 词:光学参数反演 量子微粒群优化算法 辐射-导热耦合 半透明介质 脉冲激光 

分 类 号:TK121[动力工程及工程热物理—工程热物理]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象