结合用户特征的政务服务协同过滤推荐方法  被引量:4

Government Service Collaborative Filtering Recommendation Method Based on User Characteristics

在线阅读下载全文

作  者:仇阿根[1] 张用川 罗宁 郑莹莹[3] 陆文 QIU Agen;ZHANG Yongchuan;LUO Ning;ZHENG Yingying;LU Wen(Chinese Academy of Surveying and Mapping,Beijing 100830,China;Chongqing Jiaotong University,Chongqing 400074,China;Institute of Software,Chinese Academy of Sciences,Beijing 100190,China)

机构地区:[1]中国测绘科学研究院,北京100830 [2]重庆交通大学,重庆400074 [3]中国科学院软件所,北京100190

出  处:《集成技术》2023年第1期42-55,共14页Journal of Integration Technology

基  金:国家重点研发计划项目(2019YFB2102503)。

摘  要:为推荐政务服务相关事项,提高用户办事效率与政府服务水平,该文提出一种推荐算法,即结合用户特征的政务服务协同过滤推荐方法。该方法为解决传统协同过滤未考虑用户属性的问题,将用户画像技术与其相结合。首先,建立政务服务用户画像;然后,采用奇异值度量分析方法融合用户画像与基于用户的协同过滤算法,使特征属性参与相似度计算,改善用户之间的相似性,并解决数据稀疏性的问题,使推荐结果更具实际意义;最后,计算政务服务事项预测得分,将得分最高的TOP-N推荐给用户。在实验部分,该文利用某市企业法人的政务服务真实数据进行验证。结果显示,该算法能够满足政务服务推荐的个性化要求,预测准确性较高。In order to recommend matters related to government services and improve user efficiency and government service level,a recommendation algorithm is proposed,that is,a collaborative filtering recommendation method for government services combined with user characteristics.Unlike traditional collaborative filtering which does not consider user attributes,this method combines user portrait technology with it.First,the method establishes a user portrait of government services,and then uses the singular value metric analysis method to integrate the user portrait and the user-based collaborative filtering algorithm,so that the feature attributes can participate in the similarity calculation,improve the similarity between users,and solve the problem of data sparsity.To make the results more practical,the method calculates the predicted government service score,and recommends the TOP-N with the highest score to the user.In the experimental part,the actual data of the government affairs service of a city’s enterprise legal person is used for verification.The results show that the algorithm can meet the personalized requirements of the government affairs service recommendations and improve the prediction accuracy.

关 键 词:政务服务 个性化推荐 用户画像 空间协同过滤 地理位置信息 

分 类 号:P2[天文地球—测绘科学与技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象