基于自然语言处理技术的政务智能搜索引擎应用探索  被引量:4

Research on the Application of Government Affairs Intelligent Search Engine based on NL2SQL Technology

在线阅读下载全文

作  者:姚俊华 汤代佳 YAO Junhua;TANG Daijia(Shenzhen Nanshan District Government Affairs Service Data Management Bureau,Shenzhen 518000,China;Shenzhen United Information Technology Company,Shenzhen 518000,China)

机构地区:[1]深圳市南山区政务服务数据管理局,广东深圳518000 [2]深圳市联合信息技术有限公司,广东深圳518000

出  处:《软件工程》2023年第2期59-62,58,共5页Software Engineering

基  金:深圳市基础研究重点项目(20200829114939001);深圳市科技计划项目(GJHZ20180929154602092);深圳市技术攻关面上项目(JCYJ20190809145407809).

摘  要:为适应问答系统智能化程度越来越高的特点,提出基于自然语言处理转化为SQL(Structured Query Language,结构化查询语言)语言技术的政务智能搜索引擎系统。用户通过输入自然语言问题直接获得相关数据,数据可以表格、图形等方式直观地显示。建立了融合SQL语法和增强列信息的算法模型SQL Model,利用NL2SQL(Natural Language Processing to Structured Query Language,自然语言转化为结构化查询语言)技术设计政务智能搜索引擎系统,并以某市的人口数据进行实验。实验结果表明,该技术可有效降低数据应用的复杂度,实现多维度复杂查询,降低业务部门数据搜索应用难度,提高政务数据搜索效率。In order to accommodate the increasingly intelligent characteristics of the question answering system,this paper proposes an intelligent search engine system for government affairs based on the technology of transforming natural language processing into SQL(Structured Query Language)language.Users can directly obtain relevant data by inputting natural language questions,and the data can be displayed intuitively in tables,graphs,and so on.An algorithm model of SQL Model is established that incorporates SQL syntax and enhances column information.NL2SQL(Natural Language Processing to Structured Query Language)technology is used to design the intelligent search engine system for government affairs,and an experiment is carried out with the population data of a city.The experimental results show that this technology can effectively reduce the complexity of data application,realize multi-dimensional complex query,reduce the application difficulty of data search in departments,and improve the data search efficiency of government affairs.

关 键 词:问答系统 NL2SQL 政务智能搜索引擎系统 SQL Model 

分 类 号:TP31[自动化与计算机技术—计算机软件与理论]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象