Characterizing and predicting smoldering temperature variations based on non-linear mixed effects models  

在线阅读下载全文

作  者:Sainan Yin Yanlong Shan Bo Gao Shuyuan Tang Xiyue Han Guojiang Zhang Bo Yu Shan Guan 

机构地区:[1]Science and Technology Innovation Center of Wildland Fire Prevention and Control,Beihua University,3999 Binjiang East Road,Jilin City 132013,Jilin,People’s Republic of China [2]Forestry College,Beihua University,3999 Binjiang East Road,Jilin City 132013,Jilin,People’s Republic of China

出  处:《Journal of Forestry Research》2022年第6期1829-1839,共11页林业研究(英文版)

基  金:funded by the National Natural Science Foundation of China(Grant No.31971669)。

摘  要:Underground fires are slow spreading,long-lasting and low temperature smoldering combustion without flames,mainly occurring in peatlands and wetlands with rich organic matter.The spread of the smoldering is maintained by heat released during combustion and monitoring this is an important approach to detect underground fires.The Daxing'an Mountains region is a hotspot for underground fires in northeast China.This study examined a L arix gmelinii plantation in the Tatou wetlands of the Daxing'an Mountains and determined the maximum temperature variation of humus of varying particle sizes,and the temperature rising process based on non-linear mixed effects models by an indoor combustion experiment.Maximum combustion temperatures up to 897.5°C,increased with humus depth;among the three models tested,Richard's equations were best for characterizing temperature variations;a non-linear equation with three parameters had the highest accuracy in fitting the combustion temperature variations with varying humus particle sizes.These results are informative for predicting temperature variations and provide technical support for underground fire monitoring.

关 键 词:Underground fire NLME modeling Smoldering temperature Daxing'an mountains 

分 类 号:S762.1[农业科学—森林保护学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象